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Motivation for Bayesian Nonparametric Mixture Models

Bayesian Nonparametric Mixture Models

Mixture models: an important approach to clustering

Given data, how can we infer its underlying mixture model?
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Motivation for Bayesian Nonparametric Mixture Models

Bayesian Nonparametric Mixture Models

Problem: how can we infer K , the number of clusters?

A naive solution: try many values of K , and pick the “best”:

The elbow method.
Gap statistics.
Bayesian Information Criterion.

Problems:

Requires performing clustering many times (one for each value of K ).
For each of value of K : the fitting often gets stuck in a poor local
maximum.
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Motivation for Bayesian Nonparametric Mixture Models

Bayesian Nonparametric Mixture Models

A better solution: infer K together with the other parameters:

The approach:
Bayesian nonparametric mixture models
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Slide: from Tamara Broderick’s Tutorial on Bayesian Nonparametrics.

http://www.tamarabroderick.com/tutorial_2016_mlss_cadiz.html


Dirichlet Process Mixture Models (DPMMs)

First, We Need Some Basic Concepts

In the next few slides, I will tell you a little about:

Dirichlet Distribution (here, K is still finite and known)

Dirichlet Process (“K =∞”)

The Chinese Restaurant Process (one construction of DP)

Dirichlet Process Mixture Model (DPMM, [Escobar and West,
1995] [2])
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Dirichlet Process Mixture Models (DPMMs)

Prior on components

Every componenet has a weight. The
weights can be:

Known.

Unknown and determinstic.

Unkown and random.
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Dirichlet Process Mixture Models (DPMMs)

Dirichlet Distribution

Dir(·) is a distribution over distributions.
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Dirichlet Process Mixture Models (DPMMs)

Dirichlet Distribution

Examples for Dir(α1, α2, α3), π = (π1, π2, π3) is a point on the simplex.

Figure taken from https://frnsys.com/ai_notes/machine_learning/bayesian_learning.html
Dinari, Yu, Freifeld, and Fisher Distributed MCMC Inference in DP-mm May 14, 2019 10 / 42
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Dirichlet Process Mixture Models (DPMMs)

Dirichlet Distribution

π = Cat(π1, π2, .., πK ) is a Categorical distribution.

πj ∈ (0, 1),
K∑
j=1

πj = 1 (1)

π ∼ Dir(α1, α2, ..., αK ) is the probability to draw the distribution π.
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Dirichlet Process Mixture Models (DPMMs)

Dirichlet Process

The Dirichlet Process [3] generalizes the Dirichlet Distribution to the
case of “K =∞”

Dir(α1, α2, . . .)

G ∼ DP(α,G0):

G0 - Base probability measure, either continuous or discrete.
α - Concentration parameter.
G - Random probability measure, discrete.
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Dirichlet Process Mixture Models (DPMMs)

Dirichlet Process - Example

G0 = N (0, 2.5) G ∼ DP(α = 10,G0) (2)
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Dirichlet Process Mixture Models (DPMMs)

Dirichlet Process - Example

G0 = N (0, 2.5) G ∼ DP(α = 100,G0) (3)
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Dirichlet Process Mixture Models (DPMMs)

The Chinese Restaurant Process

An intuitive way to construct a DP

At a restaurant with an infinite amount of tables, what is the chance
for a new customer to sit at an existing table, or to open a new table?
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Dirichlet Process Mixture Models (DPMMs)

The Chinese Restaurant Process

The first customer sits at the first table with probability 1.
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Dirichlet Process Mixture Models (DPMMs)

The Chinese Restaurant Process

The second customer can either join an existing table with probability

p =
|X1|

n − 1 + α
,

or open a new table with probability

p =
α

n − 1 + α
.

|X1| - Customers count at table 1.
α - Concentration parameter.
n - Customers count at the rest.
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Dirichlet Process Mixture Models (DPMMs)

DP-Mixture Models

Key application of DP: a prior over the parameters of a
mixture model.

For a mixture model with K =∞, let:

θi |G ∼ G (4)

xi ∼ F (θi ) (5)

G ∼ DP(α,G0) (6)
N

α

xi

θi

G

G0
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Dirichlet Process Mixture Models (DPMMs)

DP-Mixture Models

In an alternative view, we can use π
component weights and z points labels.

N

∞

xi

zi

G0

α

θj

π
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Parallel Sampler

The CRP is usefull for understanding the DPMM.

Problems with the CRP based sampler:

Slow.
Does not scale.
Changing 1 label at a time - small moves have harder time escaping
local maximum.

Solution:
[Chang & Fisher, NIPS ’13]: an efficient parallel sampler which
addresses these problems.

Remark: there also exist other efficient inference methods.
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Parallel Sampler

The parallel sampler is comprised of two parts:

Restricted Gibbs Sampler (K is fixed).

Splits / Merges (changing K ).
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Augmented Space

Augment the DPMM with auxiliary variables:

z̄i ∈ {l , r}, ∀xi ∈ {x1, ..., xn} (7)

π̄j = {π̄jl , π̄jr}, θ̄j = {θ̄jl , θ̄jr} (8)

Each cluster θj consists of 2 sub clusters
{θ̄jl , θ̄jr}.
In addition to each sample label zi , we hold a
label z̄i for left or right sub cluster.

∞

N

∞
θ̄j

π̄k

G0

z̄i

xi

α

π

θj

zi
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Augmented Space

-10 0 10 20

-5

0

5

10

Visualization of the augmented space, 2 clusters, each has its points
associated with either ‘left’ or ‘right’ sub-cluster.
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Splits

Create new clusters m, n by splitting an existing cluster c .

Examine each cluster and its sub-clusters, propose a split, and
calculate the Hastings ratio for the split:

Hsplit =
αΓ(Njl)fx(xIjl ;λ) · Γ(Njr )fx(xIjr ;λ)

Γ(Nj)fx(xIj ;λ)
(9)

The accept probability = min[1,Hsplit] (10)
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Merges

We allow merging of two existing clusters m, n into a new cluster c .

Examine each pair of clusters and propose a merge, calculate the
Hasting ratio for the merge:

Hmerge =
Γ(Nj1 + Nj2)

αΓ(Nj1)Γ(Nj2)

p(x |ẑ)

p(x |z)
× Γ(α)

Γ(α + Nj1 + Nj2)

×Γ(α2 + Nj1)Γ(α2 + Nj2)

Γ(α2 )Γ(α2 )
(11)

The accept probability = min[1,Hmerge] (12)
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Merges
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p(x |z)
× Γ(α)

Γ(α + Nj1 + Nj2)

×Γ(α2 + Nj1)Γ(α2 + Nj2)

Γ(α2 )Γ(α2 )
(11)

The accept probability = min[1,Hmerge] (12)

Dinari, Yu, Freifeld, and Fisher Distributed MCMC Inference in DP-mm May 14, 2019 25 / 42



Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Large Moves

Merges/Splits allows us to do large moves, changing many labels at a
time, and often allowing us to escape a local maximum.
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Parallel MCMC Sampler for DPMMs [Chang & Fisher, NIPS ’13]

Sampler iteration

Run an iteration of the restricted Gibbs sampler, on a fixed number of
clusters:

Sample variables: π, θ,z .
Sample auxiliary variables: π̄, θ̄,z̄ .

Modify the number of clusters:

Propose and accept Splits.
Propose and accept Merges.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Distributed Parallel Sampler

Chang and Fisher’s sampler:

Single machine multiprocess sampler
C++/MATLAB.
A shared memory model
Highly optimized for GMM and MNMM cases but not flexible.

We extend that work, aiming for:

a multi-core multi-machine implementation.
Flexible in both the prior and the setting.
Easy to use and configure.

The proposed implementation is done in Julia.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Why Julia?

We do not suggest that Julia is better/worse than any other language.

Rather, we offer our perspective as ML researchers (as opposed to
HPC/SW researchers).

Julia:

Easy to use.
Highly optimized, often (but not always) on par with C [1].
Short development time, similar to Python/Matlab.
Easy to distribute: the overhead, in terms of the programmer’s time,
for distributed computing is minimal.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Distributed Parallel Sampler

Distribute the Data and Labels across all nodes and processes.

Master/Slaves architecture.

Extensive use of sufficient statistics.

Minimize intra-machine communication.

At no point of time, a node can see the data which belongs to other
nodes.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Master Node

Samples the components parameters and weights.

Distribute the parameters across all nodes.

Aggregates the Sufficient statistics from all the nodes.

Decides on Splits/Merges.

Distribute the decision across all nodes.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Slave Node

Only one process communicates with the master node.

Receives component parameters from the master node.

Sample it’s Data labels.

Calculate sufficient statistics and send them to the master node..

Receives Splits/Merges decisions from the master node.

Execute Split/Merge decisions.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Architecture - Cluster
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Architecture - Node
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Implementation Key Ingredients

Abstract data structures
distribution hyper params,
sufficient statistics,
distibution sample defines a prior,
implementing a new prior require all 3 (and the
required functions).

dp-parallel-sampling.jl is the
wrapper for the model, it supplies the API for
running, loading/saving checkpoints, statistics.

global params.jl Defines the parameters
for running the model.
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Distributed & Parallel MCMC Sampler for DPMM [present work]

Distributing the model

Using Julia’s “Distributed” and “DistributedArrays” packages.

julia -p 8 --machine-file machinelist

Will start Julia with 8 processes on each node. All will be available to
the user with same ease as a single machine multi-process.

For each node we will choose one process as the ‘Node Leader’
process.

Note that the Master node ‘Master’ process, and its ‘Node Leader’
process are separated.

‘Node Leader’ can be turned off if required.
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Results

Results

For low-dimensional Gaussians: the previous method still wins

Cores × Machines C++ [Chang & Fisher, NIPS ’13] Julia [this work]
1×1 55.87 132.88
2×1 35.48 78.28
4×1 16.45 42.48
8×1 10.21 32.95
8×2 – 17.56
8×3 – 16.73
8×4 – 12.93

Table 1: Time (in [sec]) for running 100 DP-GMM iterations with
d = 2,N = 106,K = 6.
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Results

Results

For high-dimensional Gaussians: the proposed method wins even when
using only a single machine

Cores × Machines C++ [Chang & Fisher, NIPS ’13] Julia [this work]
1×1 1637.52 416.40
2×1 720.29 232.62
4×1 480.50 139.86
8×1 262.41 94.64
8×2 – 53.01
8×3 – 39.30
8×4 – 35.68

Table 2: Time (in [sec]) for running 100 DP-GMM iterations of
d = 30,N = 106,K = 6.
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Results

Conclusion based on our Perspective as ML Researchers

We don’t claim that Julia is faster/better than X.

Distributed implementations in Julia, ours included, offers a practical
and monetary value due to the ease of development and abstraction
level.

We have extended the existing model, creating a fast, scalable, easy
to use tool for DP-MM.

The code will be available next month at:
https://github.com/dinarior/dpmm_subclusters.jl
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Results

The Chinese Restaurant Process

Choosing a table for a new customer:

xi |x−i ∼ CRP(α,G0) =

{
Xj

|X−i,j |
n−1+α

XK+1 ∼ G0
α

n−1+α
(13)

x−i - All customers at the restaurant,

excluding customer i

|X−i,j | - Customers count at table 1,

excluding customer i .

α - Concentration parameter.

n - Customers count at the rest.

G0 - Base probability measure.
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Results

DP-MM Inference - CRP Sampler

Inference based on the CRP construction of the DP.

For points x = {x1, ...xn}, labels z = {z1, ...zn}, mixture components
θ and α,G0 DP hyperparams we define the sampler:

Sample labels z for all points using:

zi ∼ DP −MM(α,G0) =

{
zi = j n−i ,j · Fθ(xi |θj)
zi = K + 1 α · Fθ(xi |θK+1)

(14)

Sample mixture components parameters conditioned on the current
state of the model:

θk |x , z , G0 (15)
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