IEEE / ACM CCGRID 2019

2nd High Performance Machine Learning Workshop - HPML

Theoretical Scalability Analysis of Distributed Deep Convolutional Neural Networks

Adrián Castelló, Manuel F. Dolz, Enrique S. Quintana-Ortí, José Duato

May 14th, 2019

- Explosion in the amount of data available today
 - Reliable training of the DNNs
- Increased computing capabilities of current hardware
 - > Enables training in reasonable time
- Significant algorithmic advances + development of open source frameworks for DNNs
 - Facilitate the research and use of DNNs
 - Broaden the domains to which DNNs are being applied

Key (and growing number of) applications:

- Text recognition and language translation,
- Image classification,
- Adaptive user profile,
- Voice recognition systems,
- Autonomous driving,
- Weather forecast, etc.

 \rightarrow In general, social networks and big data analytics

Distributed training on HPC clusters

- Inference can be performed on low-end devices, but...
- training requires advanced HPC solutions
- So, what is important to achieve good performance?
 - Processor performance
 - Memory bandwidth
 - Network interconnect bandwidth
 - Number of cluster nodes
 - Parallelism model
 - Algorithm parameters

Modeling the performance of CNNs Distributed Training

Index

- 1. Training DNNs
- 2. Parallel training on clusters
- 3. Performance model
- 4. Results
- 5. Conclusions

Training DNNs

Training DNNs

From a single sample to a batch of b samples (SGD):

Index

- 1. Training DNNs
- 2. Parallel training on clusters
- 3. Performance model
- 4. Results
- 5. Conclusions

Data parallelism

- Batch size can be increased to feed all processes
- Scalability problems if model does not fit in memory

Data parallelism

Model parallelism

- Batch size can be increased to feed all processes
- Scalability problems if model does not fit in memory

- Suitable for large models
- More communications required (FP and GC)
- Increasing number of procs will not reduce runtime

Data parallelism

		A	B		
FP	$n_l \times b$	$n_l \times n_{l-1}$	$n_{l-1} imes b$		
BP-GC	$n_l imes b$	$n_l \times n_{l+1}$	$n_{l+1} \times b$		
BP-WU	$n_l \times n_{l-1}$	$n_l imes b$	$b \times n_{l-1}$		

		C A		
FP BP-GC	$\begin{array}{ c c } n_l \times b \\ n_l \times b \end{array}$	$\begin{array}{ c c }\hline n_l \times n_{l-1} \\ n_l \times n_{l+1} \end{array}$	$\begin{bmatrix} n_{l-1} \times b \\ n_{l+1} \times b \end{bmatrix}$	
BP-WU	$n_l \times n_{l-1}$	$n_l \times b$	$b \times n_{l-1}$	

		A	B
FP	$n_l \times b$	$n_l \times n_{l-1}$	$n_{l-1} \times b$
BP-GC	$n_l imes b$	$n_l \times n_{l+1}$	$n_{l+1} imes b$
BP-WU	$n_l \times n_{l-1}$	$n_l imes b$	$b \times n_{l-1}$

Data parallelism: Communication during BP

- For SGD, weight updates (gradients) must be communicated across all nodes
- Synchronous (e.g., Uber's Horovod)
 - Requires Allreduce operation

 Usually, via a parameter server which receives updates, aggregates them, and broadcasts them back

Theoretical Scalability Analysis of Distributed Deep CNNs

- 1. Training DNNs
- 2. Parallel training on clusters
- 3. Performance model
- 4. Results
- 5. Conclusions

Model distributed data parallel training, considering:

- <u>Neural network model</u>: CNNs of reference in our experiments
- <u>Parallel cluster</u>: \mathcal{P} nodes offering γ FLOPS and μ bytes/s of mem. bandwidth
- Interconnect: Star (all-to-all) and 2D mesh cluster topologies with a latency of α and bandwidth of β bytes/s

Parameter	Meaning
	Number of layers in the NN.
n_{l-1}, n_l	Number of inputs, outputs in layer <i>l</i> .
k_l^w, k_l^h	Kernel width, height of layer l (only CONV).
c_l	Number of kernels (channels) in layer l (only CONV).
b	Batch size.
δ	Bytes per floating-point number.
P	Number of nodes in the parallel cluster.
γ	Theoretical peak performance (in FLOPS).
μ	Memory bandwidth (in bytes/s).
α	Link latency (in s).
β	Link bandwidth (in bytes/s).

Node performance:

• <u>Roofline model</u>: calculate performance by using the arithmetic intensity

Node performance:

• <u>Roofline model</u>: flops (2mnk) / memops (2mn+mk+nk) for FC and CONV

Performance Model

Node performance:

- We consider a <u>blocked implementation</u> of GEMM, as it is done in GotoBLAS2, OpenBLAS, BLIS, or Intel MKL
- Partitioning according to a specific level of cache hierarchy (OpenBLAS and BLIS)
 - m, n, k are reduced to m_c, n_c, k_c so that B_c fits in L3, A_c fits in L2, and C to RAM

for
$$j_c = 0, 1, \ldots, n-1$$
 in steps of n_c
for $p_c = 0, 1, \ldots, k-1$ in steps of k_c
 $B(p_c : p_c + k_c - 1, j_c : j_c + n_c - 1) \rightarrow B_c$
for $i_c = 0, 1, \ldots, m-1$ in steps of m_c
 $A(i_c : i_c + m_c - 1, p_c : p_c + k_c - 1) \rightarrow A_c$
// Macro-kernel
 $C_c(i_c : i_c + m_c - 1, j_c : j_c + n_c - 1)$
 $+= A_c(i_c : i_c + m_c - 1, p_c : p_c + k_c - 1)$
 $\cdot B_c(p_c : p_c + k_c - 1, j_c : j_c + n_c - 1)$
endfor
endfor

• Intensity is then computed as:

$$I_{\rm FP/FC} = \frac{2m_c n_c k_c}{(m_c n_c + m_c k_c + k_c n_c)\delta}$$

Network transmission performance (MPI_Allreduce):

• <u>Allreduce</u>: Minimum spanning tree (MST) and Bucket (BKT)

Topology	ology Star		Mesh		
Algorithm	Latency	Communication	Latency	Communication	
MST	$2\lceil \log_2 P \rceil(\alpha_1 + \alpha_3)$	$2\lceil \log_2 P\rceil \tfrac{s\delta}{\beta}$	$2\sum_{k=0}^{d-1} \lceil \log_2 d_k \rceil (\alpha_1 + \alpha_3)$	$2\sum_{k=0}^{d-1} \lceil \log_2 d_k \rceil \frac{s\delta}{\beta}$	
ВКТ	$2P\alpha_1$	$2\frac{(P-1)}{P}\frac{s\delta}{\beta}$	$2\sum_{k=0}^{d-1} d_k \alpha_1$	$2\frac{(P-1)}{P}\frac{s\delta}{\beta}$	

MST (Reduce + Broadcast)

BKT (Reduce-Scatter + Allgather)

Overlapping communication with computation in BP:

- <u>Strict data dependencies</u>: FP: $\mathcal{A}^{(2)} \to \mathcal{A}^{(2)} \to \dots \to \mathcal{A}^{(\mathcal{L})}$; GC: $\mathcal{G}^{(\mathcal{L})} \to \mathcal{G}^{(\mathcal{L}-1)} \to \dots \to \mathcal{G}^{(2)}$
- But MPI_Allreduce($\mathcal{W}^{(l)}$) can be performed in parallel with $G^{(\mathcal{L}-1)}, G^{(\mathcal{L}-2)}, ..., G^{(2)}$

- 1. Training DNNs
- 2. Parallel training on clusters
- 3. Performance model
- 4. Results
- 5. Conclusions

Results

CNN models:		Model	FC	Conv	POOL	Total	
		AlexNet	3	5	3	11	
		Inception v3	1	94	14	109	
		ResNet-50 v2	1	53	1	55	
		VGG16	3	13	5	21	
SKYLAKE cluster parameters:			<u>'</u>			1	
	Parameters			SKYLAKE cluster			
	# of Nodes			1,000			
	Interconnect Dual-ra			al-rail M	il Mellanox EDR Infiniband		
	Link bandwidth (Gbps)			200			
	Max. link latency (μs)				0.5		
SKYLAKE node parameters:							
	Parameters				SKYLAKE node		
	Processor model			Int	Intel Xeon Platinum 8180M		
	Max. FP32 throughput (flops/cycle)			cle)	64		
	Frequency (GHz)				2.5		
	# of Cores				28 (56 2-way SMT)		
	Peak FP32 performance (GFLOPS) Mem. bus width (Bytes)		PS)	8,960			
				8			
	Mem. clock rate (GHz)				2.666		
	Mem. channels				6		
	Peak mem. bandwidth (GBytes/s)			s)	128		
	DDR4	RAM memory (GBytes)			256		

BLIS GEMM on a SKYLAKE Intel processor: $m_c^o = 480$, $n_c^o = 3072$, and $k_c^o = 384$

Arithmetic intensity of CNNs

• Batch size 10 and 60 samples per process, i.e., 10k and 60k samples in total

Most CNNs are compute bound, except for Inception-v3 with batch size 10k

Theoretical Scalability Analysis of Distributed Deep CNNs

Index

- 1. Training DNNs
- 2. Parallel training on clusters
- 3. Performance model
- 4. Results
- 5. Conclusions

- Current CNN models are mainly compute-bound:
 - Improving the processor capabilities does not bring noticeable improvements
- Overlapping communication with computation increases the performance!
- Network is important: increasing link bandwidth may reduce the execution time of collective operations
- Larger mini-batches provide a more accurate estimate of the gradients and accelerate the optimization process, however each step requires longer computations
 - However, increasing mini-batch size can hurt test accuracy!

Thank you for your attention!

Questions?

Theoretical Scalability Analysis of Distributed Deep CNNs