
Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Theoretical Scalability Analysis of Distributed
Deep Convolutional Neural Networks

Adrián Castelló, Manuel F. Dolz, Enrique S. Quintana-Ortí, José Duato

IEEE / ACM CCGRID 2019

2nd High Performance Machine Learning Workshop - HPML

May 14th, 2019

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Why Deep Learning now?

• Explosion in the amount of data available today
Ø Reliable training of the DNNs

• Increased computing capabilities of current hardware
Ø Enables training in reasonable time

• Significant algorithmic advances +
development of open source frameworks for DNNs
Ø Facilitate the research and use of DNNs
Ø Broaden the domains to which DNNs are being applied

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Deep Learning Applications

Key (and growing number of) applications:
• Text recognition and language translation,

• Image classification,
• Adaptive user profile,

• Voice recognition systems,

• Autonomous driving,

• Weather forecast, etc.

→ In general, social networks and big data analytics

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Distributed training on HPC clusters

• Inference can be performed on low-end devices, but…

• training requires advanced HPC solutions

• So, what is important to achieve good performance?
• Processor performance
• Memory bandwidth
• Network interconnect bandwidth
• Number of cluster nodes
• Parallelism model
• Algorithm parameters

Modeling the performance
of CNNs Distributed Training

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Index

1. Training DNNs
2. Parallel training on clusters
3. Performance model
4. Results
5. Conclusions

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Training DNNs

Supervised training (GD)
Forward + Backward pass
Training 1 sample

Assume given inputs x
and known outputs y

1. Forward pass (FP)

Theoretical Scalability Analysis of Distributed
Deep Convolutional Neural Networks

Adrián Castelló⇤, Manuel F. Dolz†, Enrique S. Quintana-Ortı́⇤, José Duato⇤
⇤Depto. de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46.022–València, Spain.

Emails: {adcastel,quintana,jduato}@disca.upv.es
†Depto. de Ingenierı́a y Ciencia de Computadores, Universitat Jaume I, 12.071–Castellón, Spain.

Email: dolzm@uji.es

Abstract—We analyze the asymptotic performance of the
training process of deep neural networks (NN) on clusters in
order to determine the scalability. For this purpose, i) we
assume a data parallel implementation of the training algorithm,
which distributes the batches among the cluster nodes and
replicates the model; ii) we leverage the roofline model to
inspect the performance at the node level, taking into account
the floating-point unit throughput and memory bandwidth; and
iii) we consider distinct collective communication schemes that
are optimal depending on the message size and underlying
network interconnection topology. We then apply the resulting
performance model to analyze the scalability of several well-
known deep convolutional neural networks as a function of
the batch size, node floating-point throughput, node memory
bandwidth, cluster dimension, and link bandwidth.

Index Terms—Deep Neural Networks (DNNs), Supervised
Training, Roofline Model, Clusters.

I. INTRODUCTION

Deep learning (that is, machine learning via deep neural
networks, or DNNs) has been applied to image classification,
speech recognition and neural machine translation, reporting
increasing levels of accuracy over the last years; see, e.g., [2],
[8], [22] among many others. In addition, in the era of big data,
deep learning is also being established as one of the pillars of
scientific discovery, complementary to theory, experimentation
and scientific simulation [12], [15]. Nowadays, DNNs are thus
envisioned as potential key technologies in areas as diverse as
quantum technologies, solid state lighting, nanoelectronics and
nanomechanics, high throughput screening of new materials,
computer vision in microscopy, radiography and tomography,
and astrophysics simulation, to name only a few. Furthermore,
the application of deep learning to current data science falls
short in comparison with the volume of machine learning
techniques being leveraged by social media companies such
as Google, Baidu and Facebook in their daily business.

A neural network (deep or not) can be viewed as a
generic algorithm, which (semi-)automatically adapts itself
(i.e., learns) to solve a specific problem. In supervised neural
networks (NNs), the adaptation occurs via an off-line learning
process (or training), which is then followed by the use of the
NN to solve the problem (or inference) [12], [15]. In general,
the inference is an inexpensive process, which can be often
performed using low precision (e.g., fixed-point, integer or
even binary arithmetic) on low-cost hardware. In comparison,

training is computationally costly, especially for DNNs with
many layers/inputs/outputs, (even if compression techniques
such as model pruning are applied,) and requires the use of
floating-point arithmetic [15].

In this paper, we analyze the theoretical scalability of the
training stage for DNNs on clusters, making the following
specific contributions:

• We use the roofline model [19] to analyze the per-
formance of the kernels arising in Convolutional NNs
(CNNs) at the node level.

• In the performance model, we characterize the blocked
(tiled) realization of the GEMM kernel in BLIS [18], and
the convolutional operation in its basic implementation.

• For the data-parallel implementation, we evaluate the
effect of overlapping communication with computation
in the realization of the backpropagation on a cluster.

• We analyze the impact of varying the communication
algorithm and several key architecture and model pa-
rameters on performance for a number of state-of-the-art
(SOTA) CNNs: AlexNet [8], ResNet-50 v2 [5], Inception
v3 [16] and VGG16 [14].

This paper is organized as follows. Section II reviews the
conventional and batched training processes of NNs. Next,
Section III discusses both model and data parallel distributed
training approaches for clusters. Section IV presents the
performance model from the NN, parallel cluster, node and
communication points of view. In Section V, we leverage the
roofline model to evaluate the performance of some repre-
sentative CNNs. Finally, Section VI gives a few concluding
remarks and future works.

II. TRAINING DNNS

A. Overview of NNs
A NN consisting of L layers, with nl neurons at layer l =

1, 2, . . . , L, maps the input (vector) x 2 Rn1 to the output
ỹ 2 RnL as follows:

a
(1) = x, (1)
a
(l) = �(z(l)) = �(W (l)

a
(l�1) + b

(l)) 2 Rnl , (2)
l = 2, 3, . . . , L,

ỹ = a
(L)

. (3)

Here:

a(2) a(3) a(4) a(5)a(1)

x y’

nl

GEMV

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w(3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Training DNNs

2. Backward pass (BP)
2.1. Gradient computation (GC)

2.2. Weight update (WU)

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

g(4)g(3)g(2)

W(5)W(4)W(3)W(2)

g(5)

b(2) b(3) b(4) b(5)

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w(3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

nl

nl

nl

nl+1

GEMV

Outer-product

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

From a single sample to a batch of b samples (SGD):

1. Forward pass (FC)

2. Backward pass
2.1. Gradient computation (GC)

2.2. Weight update (WU)

High-performance Batched Training

A(2) A(3) A(4) A(5)A(1)

X Y’

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

G(4)G(3)G2)

W(5)W(4)W(3)W(2)

G(5)

b(2) b(3) b(4) b(5)

nl

b

b

nl

nl

nl+1

nl

GEMM

GEMM

GEMM

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Index

1. Training DNNs
2. Parallel training on clusters
3. Performance model
4. Results
5. Conclusions

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Data parallelism

Parallel Training on Clusters

• Batch size can be increased to feed all processes
• Scalability problems if model does not fit in memory

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w(3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w(3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

W(5)W(4)W(3)W(2)

MPI
_A

llre
du

ce
(W

l)

Proc. 1 Proc. 2

Proc. 3 Proc. 4

W
U

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Data parallelism

Parallel Training on Clusters

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w(3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w(3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

W(5)W(4)W(3)W(2)

MPI
_A

llre
du

ce
(W

l)

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

Proc. 1 Proc. 2

Proc. 3 Proc. 4

Proc. 1

Proc. 1

Proc. 1

Proc. 1

Proc. 2

Proc. 2

Proc. 2

MPI_Allgather(Al)

MPI_Allreduce(Gl)

Model parallelism

W
U

FP

GC

• Suitable for large models
• More communications required (FP and GC)
• Increasing number of procs will not reduce runtime

• Batch size can be increased to feed all processes
• Scalability problems if model does not fit in memory

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Data parallelism

Parallel Training on Clusters

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Data parallelism

Parallel Training on Clusters

Model parallelism

EuroMPI’19, Sept. 11–13, 2019, Zurich, Switzerland Castelló, et al.

C A B

FP b ⇥ cl ⇥ hl ⇥wl b ⇥ cl�1 ⇥ hl�1 ⇥wl�1 cl ⇥ cl�1 ⇥ h
0
l ⇥w

0
l

BP-GC b ⇥ cl ⇥ hl ⇥wl b ⇥ cl+1 ⇥ hl+1 ⇥wl+1 cl ⇥ cl+1 ⇥ h
0
l+1 ⇥w

0
l+1

BP-WU cl ⇥ cl�1 ⇥ h
0
l ⇥w

0
l b ⇥ cl�1 ⇥ hl�1 ⇥wl�1 b ⇥ cl ⇥ hl ⇥wl

C A B̄

FP cl ⇥ (b · hl ·wl) cl ⇥ (cl�1 · h0l ·w
0
l) (cl�1 · h0l ·w

0
l) ⇥ (b · hl ·wl)

BP-GC cl ⇥ (b · hl ·wl) cl ⇥ (cl+1 · h0l+1 ·w
0
l+1) (cl+1 · h0l+1 ·w

0
l+1) ⇥ (b · hl ·wl)

BP-WU cl ⇥ (cl�1 · h0l ·w
0
l) cl ⇥ (b · cl�1 · hl�1 ·wl�1) (b · cl�1 · hl�1 ·wl�1) ⇥ (cl�1 · hl ·wl)

Table 2: Dimensions of tensor operands for the convolution C = C���(A,B) with and without im2col transformation (top and
bottom, respectively). In the latter case, the convolution is performed as the ����C = (C+)A·B̄, with B̄ denoting the augmented
matrix obtained by applying im2col to the input operand of the convolution B.

From the perspective of the operands to the ���� in the FP stage,
see (2), this means thatW (l) is distributed among the processes by
blocks of rows (not necessarily cyclically), whileA(l�1) is replicated.
Each process then computes the product between its local row block
ofW (l) and the (full) copy of A(l�1) to obtain a local row block of
the result Z (l). For example, with P = 4 processes, the partitioning
in the top plot in Figure 4, corresponding to

Z
(l) = W

(l)
A
(l�1) + B(l) ⌘ (5)

26666664

Z1
Z2
Z3
Z4

37777775
=

26666664

W1
W2
W3
W4

37777775
A +

26666664

B1
B2
B3
B4

37777775
, (6)

illustrates that process p computes Zp = WpA(l�1) + Bp , for p =
1, 2, 3, 4. However, we note that, in preparation for the next layer
of the FP stage, A(l) = � (Z (l)) then has to be replicated across all
P processes. In principle, this can be done via an Allgather inter-
process communication [4].

Next, in the BP-GC stage, both input operands to the ���� in (3),
W

(l) and G
(l+1), are distributed among the processes by blocks

of rows. Now, consider the partitioning of (3) represented in the
middle plot in Figure 4, with P = 4. The corresponding ���� can
then be performed as

G
(l) = (W (l+1))TG(l+1)

= (WT
1 ·G1 +W

T
2 ·G2 +W

T
3 ·G3 +W

T
4 ·G4), (7)

with process p responsible of computing the partial updateWT
p ·Gp ,

forp = 1, 2, 3, 4. In principle, this requires anAllreduce inter-process
communication [4] to accumulate these partial results into the
global G(l). We note here that, at the end of this global reduction,
each process p stores a full copy ofG(l) but, for the next layer (l �1),
it actually only needs the corresponding p-th block row.

Finally, for the BP-WU stage, both G
(l), and A

(l�1) in (4) are
replicated across all processes. Therefore, each process can compute
the local part of the update toW (l) with no additional inter-process
communication. The bottom plot in Figure 4 shows that, for P=4

FP:

W

W

W

4
W

2

1

3

A

3
Z

4
Z

Z
2

1
Z

=

BP-GC: =

T T T T

1
W

2
W

3
W

4
W

3

4
G

G

G

G

2

1

G

BP-WU:
3

4
W

W

2
W

1
W

T
= G A

Figure 4: Data/workload distribution in model parallelism
using P = 4 processes. Each block with a di�erent color is
mapped to a distinct process. The weight matrix W is dis-
tributed among all processes. Matrices of a single color are
replicated among all processes. (For simplicity, the �gure
does not include some operands with no impact on the dis-
tribution of the workload, such as B(l) and �.)

processes, we have the partitioning

W
(l) = W

(l) � �G
(l)(A(l�1))T ⌘ (8)

26666664

W1
W2
W3
W4

37777775
=

26666664

W1
W2
W3
W4

37777775
� �

26666664

G1
G2
G3
G4

37777775
A
T . (9)

Therefore, this operation can be done with process p computing
Wp = Wp � �Gp (A(l�1))T , for p = 1, 2, 3, 4, using the local block
row of the replicated G(l) and the full copy of A(l�1).

3.2.2 C��� layer. The model parallelization of the C��� layer can
follow the same approach as that of the FC layer. For example, in
the FP stage, it is possible to parallelize by assigning the compu-
tations for a group of the cl output channels to each process. As
the weight matrix at layer l ,W (l), is presented to the ���� as a

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Data parallelism

Parallel Training on Clusters

Model parallelism

EuroMPI’19, Sept. 11–13, 2019, Zurich, Switzerland Castelló, et al.

C A B

FP b ⇥ cl ⇥ hl ⇥wl b ⇥ cl�1 ⇥ hl�1 ⇥wl�1 cl ⇥ cl�1 ⇥ h
0
l ⇥w

0
l

BP-GC b ⇥ cl ⇥ hl ⇥wl b ⇥ cl+1 ⇥ hl+1 ⇥wl+1 cl ⇥ cl+1 ⇥ h
0
l+1 ⇥w

0
l+1

BP-WU cl ⇥ cl�1 ⇥ h
0
l ⇥w

0
l b ⇥ cl�1 ⇥ hl�1 ⇥wl�1 b ⇥ cl ⇥ hl ⇥wl

C A B̄

FP cl ⇥ (b · hl ·wl) cl ⇥ (cl�1 · h0l ·w
0
l) (cl�1 · h0l ·w

0
l) ⇥ (b · hl ·wl)

BP-GC cl ⇥ (b · hl ·wl) cl ⇥ (cl+1 · h0l+1 ·w
0
l+1) (cl+1 · h0l+1 ·w

0
l+1) ⇥ (b · hl ·wl)

BP-WU cl ⇥ (cl�1 · h0l ·w
0
l) cl ⇥ (b · cl�1 · hl�1 ·wl�1) (b · cl�1 · hl�1 ·wl�1) ⇥ (cl�1 · hl ·wl)

Table 2: Dimensions of tensor operands for the convolution C = C���(A,B) with and without im2col transformation (top and
bottom, respectively). In the latter case, the convolution is performed as the ����C = (C+)A·B̄, with B̄ denoting the augmented
matrix obtained by applying im2col to the input operand of the convolution B.

From the perspective of the operands to the ���� in the FP stage,
see (2), this means thatW (l) is distributed among the processes by
blocks of rows (not necessarily cyclically), whileA(l�1) is replicated.
Each process then computes the product between its local row block
ofW (l) and the (full) copy of A(l�1) to obtain a local row block of
the result Z (l). For example, with P = 4 processes, the partitioning
in the top plot in Figure 4, corresponding to

Z
(l) = W

(l)
A
(l�1) + B(l) ⌘ (5)

26666664

Z1
Z2
Z3
Z4

37777775
=

26666664

W1
W2
W3
W4

37777775
A +

26666664

B1
B2
B3
B4

37777775
, (6)

illustrates that process p computes Zp = WpA(l�1) + Bp , for p =
1, 2, 3, 4. However, we note that, in preparation for the next layer
of the FP stage, A(l) = � (Z (l)) then has to be replicated across all
P processes. In principle, this can be done via an Allgather inter-
process communication [4].

Next, in the BP-GC stage, both input operands to the ���� in (3),
W

(l) and G
(l+1), are distributed among the processes by blocks

of rows. Now, consider the partitioning of (3) represented in the
middle plot in Figure 4, with P = 4. The corresponding ���� can
then be performed as

G
(l) = (W (l+1))TG(l+1)

= (WT
1 ·G1 +W

T
2 ·G2 +W

T
3 ·G3 +W

T
4 ·G4), (7)

with process p responsible of computing the partial updateWT
p ·Gp ,

forp = 1, 2, 3, 4. In principle, this requires anAllreduce inter-process
communication [4] to accumulate these partial results into the
global G(l). We note here that, at the end of this global reduction,
each process p stores a full copy ofG(l) but, for the next layer (l �1),
it actually only needs the corresponding p-th block row.

Finally, for the BP-WU stage, both G
(l), and A

(l�1) in (4) are
replicated across all processes. Therefore, each process can compute
the local part of the update toW (l) with no additional inter-process
communication. The bottom plot in Figure 4 shows that, for P=4

FP:

W

W

W

4
W

2

1

3

A

3
Z

4
Z

Z
2

1
Z

=

BP-GC: =

T T T T

1
W

2
W

3
W

4
W

3

4
G

G

G

G

2

1

G

BP-WU:
3

4
W

W

2
W

1
W

T
= G A

Figure 4: Data/workload distribution in model parallelism
using P = 4 processes. Each block with a di�erent color is
mapped to a distinct process. The weight matrix W is dis-
tributed among all processes. Matrices of a single color are
replicated among all processes. (For simplicity, the �gure
does not include some operands with no impact on the dis-
tribution of the workload, such as B(l) and �.)

processes, we have the partitioning

W
(l) = W

(l) � �G
(l)(A(l�1))T ⌘ (8)

26666664

W1
W2
W3
W4

37777775
=

26666664

W1
W2
W3
W4

37777775
� �

26666664

G1
G2
G3
G4

37777775
A
T . (9)

Therefore, this operation can be done with process p computing
Wp = Wp � �Gp (A(l�1))T , for p = 1, 2, 3, 4, using the local block
row of the replicated G(l) and the full copy of A(l�1).

3.2.2 C��� layer. The model parallelization of the C��� layer can
follow the same approach as that of the FC layer. For example, in
the FP stage, it is possible to parallelize by assigning the compu-
tations for a group of the cl output channels to each process. As
the weight matrix at layer l ,W (l), is presented to the ���� as a

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

gradients and update the weights. In BP-GC, the information
flows between layers from “right” to “left”, again with strict
inter-layer data dependencies between consecutive layers. As
a consequence, the only option that remains (in a synchronous
training realization) is to exploit intra-layer parallelism, which
basically boils down to parallelizing the individual GEMM
kernel inside each layer. (At this point we note that, in BP-
WU, there is no inter-layer flow of information and, therefore,
no inter-layer dependencies. That will be exploited in the
following section, to analyze a parallel algorithm that overlaps
communication and computation).

The GEMM operation is a fundamental kernel of dense linear
algebra, which has been implemented in many parallel plat-
forms, including high-performance distributed-memory real-
izations for clusters such as those in ScaLAPACK, PLAPACK,
HPL and Elemental [11], [13], [17]. The parallel efficiency and
scalability of GEMM is high, provided the problem dimensions
are increased proportionally to the number of resources (cores,
GPUs or nodes).

For the remaining discussion, we will discuss the paral-
lelization of GEMM using P “processes”. A parallel version
of GEMM can be derived by (cyclically) partitioning the matrix
operands by blocks of columns and/or rows (in general,
1-D column/row distributions or 2-D distributions). In the
following two subsections, we review two distinct approaches
for the parallelization of this operation tailored for NN.

A. Model parallelism
In this scheme, the three GEMM involved in layer l are

parallelized by partitioning the problem data (and distributing
the workload) across the layer inputs and/or outputs; that
is, the nl�1 and/or nl dimensions. The problem with this
approach is that the number of inputs/outputs in most SOTA
models is in the order of a few thousand, which is sufficient to
feed only a few current nodes/cores/GPUs in a current parallel
platform.2

Increasing the number of “processes” P employed to
compute the GEMM in the model-parallel scheme implies
that each process becomes responsible for a smaller sub-
problem. Proceeding in this direction (i.e., increasing P for
a fixed “problem size”) eventually transforms the problem
into a communication-bound operation, whose performance
is constrained by the memory access and/or inter-process
communication. From that point, increasing P further, for
model parallelism, will not produce any visible reduction in
the execution time.

B. Data parallelism
In this approach, the GEMM kernels are parallelized by

partitioning the problem data (and distributing the workload)
across the batch size b. As the number of samples that
are necessary to train a NN is quite high, (provided some
algorithmic issues that impact the training convergence are

2Note that, internally, model parallelism may be exploiting inside a cluster
node if the DNN framework invokes a multi-threaded version of Intel MKL-
DNN.

FP: Z
3

Z
4

Z
1

Z = 1
W A

2
A

3
A

4
A

2

BP-GC: G
2

G
3

G
4

G = 1
W G

2
G

3
G

4
G

1

BP-WU:

T

T

T

T

1
G

2
G

3
G

4
G=W

1
A

2
A

3
A

4
A

Fig. 2: Data/workload distribution in data parallelism using
P = 4 processes. Each block with a different colour is mapped
to a distinct process. The weight matrix W is replicated in all
processes. (For simplicity, the figure does not include some
operands with no impact on the distribution of the workload,
such as B

(l), D(l) and ⌘.)

conveniently tackled) it is possible to increase the batch size
b proportionally to P up to a certain dimension. In particular,
some recent examples have demonstrated that the use of large
batches, consisting of up to 32k–64k inputs, help to make
better use of the hardware resources [20], [21].

In the data-parallel scheme, the weight matrix is replicated
so that each process maintains a local copy while the remain-
ing matrix operands involved in the training are distributed
by blocks of columns; see Figure 2. Therefore, in the FP and
WP-GC stages, represented by the top two plots in the figure,
there is no need for any inter-process communication.

In contrast, for BP-WU, an Allreduce [1] is required to
accumulate the updates across all P processes into the model
(weights) prior to the computation with the next batch. To
illustrate this, consider the partitioning of (10) represented at
the bottom plot in Figure 2. The corresponding GEMM can
then be performed as

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T

= W
(l) � ⌘ (G1 ·AT

1 +G2 ·AT
2 +

G3 ·AT
3 +G4 ·AT

4), (11)

with process p = 1, 2, 3, 4 responsible for the partial update
Gp · AT

p . This yields the afore-mentioned Allreduce inter-
process communication to accumulate these partial results into
the global W (l).

A scalability problem may appear for the data-parallel
scheme if the complete model (that is W) does not fit
(replicated) in the memory of each “process” (e.g., the memory
of a node in a cluster configuration, or a GPU in a multi-GPU
platform).

53

Layer 2 Layer 3 Layer 4 Layer 5Layer 1

(Inputs) (Outputs)

w (3)

Fig. 1: Example of a network with five layers. Layers 1 and 5
correspond, respectively, to the network inputs and outputs.
The remaining layers are “hidden”. The figure highlights the
connection between neuron 3 at layer 2 and neuron 5 at layer 3,
with weight w(3)

53 .

• a
(l) = a

(l)
j 2 Rnl denotes the vector of outputs (activa-

tions) from neurons at layer l.
• W

(l) = (w(l)
ij) 2 Rnl⇥nl�1 is the matrix of weights at

layer l, with the matrix entry w
(l)
ij associated with the

connection from neuron j in layer l � 1 to neuron i in
layer l.

• b
(l) 2 Rnl is the vector of biases at layer l.

• �(·) stands for a non-linear function (e.g., sigmoid,
ReLU, etc. [15]), which is applied element-wise to its
input vector.

Figure 1 illustrates an instance of a NN composed of five
layers, with 4, 3, 5, 4 and 2 neurons in layers 1–5, respectively.

Given an input x with label y (also known as target output or
ground truth), the training process in supervised learning aims
to minimize the difference (or error) between y and the output
computed by the NN, namely ỹ. This is done by executing an
iterative process that computes the gradients of W and b, and
uses them to update W and b. The stochastic gradient method
implements this iterative process by using a batch of inputs for
each iteration, instead of using the entire training set. For each
iteration, the ‘forward pass” (FP) defined by (1)–(3) delivers
ỹ. Then this method minimizes the error of labeled data and
it is usually applied to ky � ỹk. This is pursued as part of a
“back propagation” (BP) procedure [6] that first computes the
gradients:

g
(L) = D

(L)(a(L) � ỹ), (4)
g
(l) = D

(l)(W (l+1))T g(l+1)
, (5)

l = L� 1, L� 2, . . . , 2;

and then uses them to update weights and biases as follows:

W
(l) = W

(l) � ⌘ g
(l)(a(l�1))T , (6)

b
(l) = b

(l) � ⌘ g
(l)
, l = L,L� 1, . . . , 2. (7)

C A B

FP nl ⇥ b nl ⇥ nl�1 nl�1 ⇥ b
BP-GC nl ⇥ b nl ⇥ nl+1 nl+1 ⇥ b
BP-WU nl ⇥ nl�1 nl ⇥ b b⇥ nl�1

TABLE I: Dimensions of matrix operands for GEMM.

In these expressions, D 2 Rnl⇥nl is the diagonal matrix
containing the vector �

0(z(l)) on the diagonal, and ⌘ is the
learning rate; see [6] for details.

There are three main operations in the training process: (in
FP) the matrix-vector product (GEMV) in (2); and (in BP) the
GEMV in the gradient computation (GC) and the rank-1 update
for the weight update (WU), in (5) and (6) respectively.

The problem with these types of computational kernels is
that the ratio between the floating-point operations1 (flops)
and memory access (memops) is O(1). This implies that they
are memory-bound in practically all current architectures and,
therefore, can only proceed at the speed of the memory (unless
all problem data fits into the processor cache).

B. High-performance batched training
The batched version of training avoids the memory bottle-

neck by performing the FP and BP stages in batches of b

inputs per forward-backward pass. This transforms the two
GEMV and the rank-1 update present in these two stages into
three matrix-matrix multiplications (GEMM) which, provided
b is sufficiently large, are compute-bound kernels.

Concretely, let us assume a batch of b input vectors X =
[x1, x2, . . . , xb] = A

(1) 2 Rn1⇥b. Then, with batched training,
the GEMV (2) in FP becomes

Z
(l) = W

(l)
A

(l�1) +B
(l)
, (8)

where Z
(l) 2 Rnl⇥b and B

(l) =
⇥
b
(l)
, b

(l)
, . . . , b

(l)
⇤
2 Rnl⇥b.

Furthermore, the GEMV (5) in BP-GC is transformed into:

G
(l) = (W (l+1))TG(l+1)

, (9)

with G
(l) 2 Rnl⇥b, G

(l+1) 2 Rnl+1⇥b (and where, for
simplicity, we drop the generalization of the diagonal matrices
D

(l) to the “batched” case); and the rank-1 update in (6) of
BP-WU boils down to:

W
(l) = W

(l) � ⌘G
(l)(A(l�1))T . (10)

In summary, the three GEMM in (8)–(10) are of the form
C = (C+)A ·B, with the dimensions of the matrix operands
for the l-th layer as given in Table I.

III. PARALLEL TRAINING ON CLUSTERS

As discussed in section II, during the FP stage of training,
the information flows between layers from “left” to “right”,
with strict data dependencies between consecutive layers.
This impedes inter-layer parallelization or pipelining of the
computations (unless an asynchronous version of training is re-
alized [9]). Once FP is completed, BP proceeds to compute the

1In the following, we will assume all arithmetic operations are performed
with 32-bit floating-point data.

Para
lle

lism
 m

od
el

an
aly

ze
d

in
thi

s p
ap

er!
!!

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

• Asynchronous (e.g., distributed TF)
• Usually, via a parameter server which

receives updates, aggregates them, and
broadcasts them back

Parallel Training in Clusters

Data parallelism: Communication during BP

• For SGD, weight updates (gradients) must be communicated
across all nodes

• Synchronous (e.g., Uber’s Horovod)
• Requires Allreduce operation

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Index

1. Training DNNs
2. Parallel training on clusters
3. Performance model
4. Results
5. Conclusions

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance Model

Model distributed data parallel training, considering:
• Neural network model: CNNs of reference in our experiments

• Parallel cluster: P nodes offering 𝛾 FLOPS and 𝜇 bytes/s of mem. bandwidth

• Interconnect: Star (all-to-all) and 2D mesh cluster topologies with a latency of
𝛼 and bandwidth of β bytes/s

Now, let us analyze the per-process memory requirements
of two representative NNs: VGG16 and ResNet-50 [15]. The
former one comprises 123 million weights, which require
471 MiB when using IEEE-754 single-precision floating-point
numbers (hereafter, FP32). Considering that the computations
for FP and BP-WU both need these weights, the model
requires twice this memory, i.e., 942 MiB per process. Fol-
lowing the same argument, the total amount of memory for
the ResNet-50 model is 16 MiB per process. These memory
requirements fit the RAM capacity of current SOTA cluster
nodes.

Note that the estimated per-process memory requirements
for data parallelism do not consider model compression tech-
niques, such as model pruning and/or quantization, which
may considerably reduce the memory needs (see, e.g., [4])
and extend the range of problems that can be tackled via
this parallelization scheme. Furthermore, the memory capacity
bottleneck can be partially tackled by storing the model in
secondary memory as, provided the re-use factor for the GEMM
(equal to the batch size) is large enough, the access to the
data in secondary memory can be overlapped with enough
computation.

IV. PERFORMANCE MODEL

A. Neural network

We consider training a NN composed of L layers, with nl

neurons at layer l = 1, 2, . . . , L, that processes a batch of
b inputs at a time. A layer can be fully-connected (FC) or
convolutional (CONV) [15]. We discard other types of layers,
as we expect they contribute a minor cost to the total execution
time for complex DNNs. For the same reasons, we also dismiss
the costs due to other operations such as the application of
the non-linear function, low-order terms, etc. Finally, all data
and arithmetic are performed with (floating-point) numbers
represented with � bytes per number.

B. Parallel cluster

We consider a cluster comprised of P nodes. The perfor-
mance of the node is characterized by a (theoretical) peak rate
of � FLOPS (flops/s) and a memory bandwidth of µ bytes/s.
We assume two interconnect topologies between the cluster
nodes:

• Star (all the nodes attached to a central switch that
provides full speed between any two nodes).

• 2D mesh.
The network transmission performance is characterized by
link latency and bandwidth parameters given by ↵ and �,
respectively.

We assume that all the nodes are connected and thus do not
consider the topology of the interconnect. In this scenario, the
cost of sending a message of s elements of size � between
any two nodes costs ↵+ s�

� (in sec.). As part of future work,
we plan to consider network conflicts in our model.

The parameters to model the NN and parallel cluster are
collected in Table II.

Parameter Meaning
L Number of layers in the NN.
nl�1, nl Number of inputs, outputs in layer l.
kwl , khl Kernel width, height of layer l (only CONV).
cl Number of kernels (channels) in layer l (only CONV).
b Batch size.
� Bytes per floating-point number.
P Number of nodes in the parallel cluster.
� Theoretical peak performance (in FLOPS).
µ Memory bandwidth (in bytes/s).
↵ Link latency (in s).
� Link bandwidth (in bytes/s).

TABLE II: Parameters for the performance model.

C. Node performance
The roofline model [19] provides a visual inspection tool

to analyze the performance of any algorithm including, in our
case, the GEMM operations to be performed locally at each
node during FP and BP. The performance attained by these
operations can be limited by either the memory access or the
floating-point units (FPUs) throughput. This is determined by
the memory bandwidth, the theoretical peak performance of
the FPUs, and the operation intensity of the algorithm, say I ,
which is given by the number of flops per byte accessed in
memory.

Using the (approximate) number of flops and memops
performed at layer l in Table III, we can easily obtain the
intensity for each layer of a generic NN. For example, the
intensity of the GEMM to be computed during FP, for a FC
layer, is

IFP/FC =
2nlnl�1b

(nlb+ nl�1b+ nlnl�1)�
flops/byte. (12)

These initial estimates of the operational intensity can be
refined by considering a blocked (or tiled) implementation of
GEMM, as those that are part of high-performance instances
of this operation in dense linear algebra libraries such as
GotoBLAS2, OpenBLAS, BLIS and Intel MKL [3], [10], [18].
In particular, in these instances of GEMM, the matrix operands
are partitioned to target a specific level of the cache hierarchy
so as to improve data reuse. For GotoBLAS2 and BLIS, for
example, the GEMM C = A ·B, with C 2 Rm⇥n, A 2 Rm⇥k,
B 2 Rk⇥n, is performed via three nested loops around two
packing routines and a macro-kernel, as illustrated in Figure 3.

In practice, the parameters mc, nc, kc in the blocked high-
performance implementation of GEMM are adjusted for a target
processor architecture, so that Bc occupies a significant part
of the L3 cache while Ac resides on the L2 cache and Cc is
streamed from main memory [18]. In principle, it could seem
that the operational intensity of this realization is thus simply
given by

IFP/FC =
2mcnckc

(mcnc +mckc + kcnc)�
, (13)

which just replaces the m,n, k dimensions of the intensity of
the general case with the architecture parameters mc, nc, kc.
However, in the specific case of the GEMM operations appear-
ing in NN, it is important to take into account whether any

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance Model

Node performance:
• Roofline model: calculate performance by using the arithmetic intensity

Now, let us analyze the per-process memory requirements
of two representative NNs: VGG16 and ResNet-50 [15]. The
former one comprises 123 million weights, which require
471 MiB when using IEEE-754 single-precision floating-point
numbers (hereafter, FP32). Considering that the computations
for FP and BP-WU both need these weights, the model
requires twice this memory, i.e., 942 MiB per process. Fol-
lowing the same argument, the total amount of memory for
the ResNet-50 model is 16 MiB per process. These memory
requirements fit the RAM capacity of current SOTA cluster
nodes.

Note that the estimated per-process memory requirements
for data parallelism do not consider model compression tech-
niques, such as model pruning and/or quantization, which
may considerably reduce the memory needs (see, e.g., [4])
and extend the range of problems that can be tackled via
this parallelization scheme. Furthermore, the memory capacity
bottleneck can be partially tackled by storing the model in
secondary memory as, provided the re-use factor for the GEMM
(equal to the batch size) is large enough, the access to the
data in secondary memory can be overlapped with enough
computation.

IV. PERFORMANCE MODEL

A. Neural network

We consider training a NN composed of L layers, with nl

neurons at layer l = 1, 2, . . . , L, that processes a batch of
b inputs at a time. A layer can be fully-connected (FC) or
convolutional (CONV) [15]. We discard other types of layers,
as we expect they contribute a minor cost to the total execution
time for complex DNNs. For the same reasons, we also dismiss
the costs due to other operations such as the application of
the non-linear function, low-order terms, etc. Finally, all data
and arithmetic are performed with (floating-point) numbers
represented with � bytes per number.

B. Parallel cluster

We consider a cluster comprised of P nodes. The perfor-
mance of the node is characterized by a (theoretical) peak rate
of � FLOPS (flops/s) and a memory bandwidth of µ bytes/s.
We assume two interconnect topologies between the cluster
nodes:

• Star (all the nodes attached to a central switch that
provides full speed between any two nodes).

• 2D mesh.
The network transmission performance is characterized by
link latency and bandwidth parameters given by ↵ and �,
respectively.

We assume that all the nodes are connected and thus do not
consider the topology of the interconnect. In this scenario, the
cost of sending a message of s elements of size � between
any two nodes costs ↵+ s�

� (in sec.). As part of future work,
we plan to consider network conflicts in our model.

The parameters to model the NN and parallel cluster are
collected in Table II.

Parameter Meaning
L Number of layers in the NN.
nl�1, nl Number of inputs, outputs in layer l.
kwl , khl Kernel width, height of layer l (only CONV).
cl Number of kernels (channels) in layer l (only CONV).
b Batch size.
� Bytes per floating-point number.
P Number of nodes in the parallel cluster.
� Theoretical peak performance (in FLOPS).
µ Memory bandwidth (in bytes/s).
↵ Link latency (in s).
� Link bandwidth (in bytes/s).

TABLE II: Parameters for the performance model.

C. Node performance
The roofline model [19] provides a visual inspection tool

to analyze the performance of any algorithm including, in our
case, the GEMM operations to be performed locally at each
node during FP and BP. The performance attained by these
operations can be limited by either the memory access or the
floating-point units (FPUs) throughput. This is determined by
the memory bandwidth, the theoretical peak performance of
the FPUs, and the operation intensity of the algorithm, say I ,
which is given by the number of flops per byte accessed in
memory.

Using the (approximate) number of flops and memops
performed at layer l in Table III, we can easily obtain the
intensity for each layer of a generic NN. For example, the
intensity of the GEMM to be computed during FP, for a FC
layer, is

IFP/FC =
2nlnl�1b

(nlb+ nl�1b+ nlnl�1)�
flops/byte. (12)

These initial estimates of the operational intensity can be
refined by considering a blocked (or tiled) implementation of
GEMM, as those that are part of high-performance instances
of this operation in dense linear algebra libraries such as
GotoBLAS2, OpenBLAS, BLIS and Intel MKL [3], [10], [18].
In particular, in these instances of GEMM, the matrix operands
are partitioned to target a specific level of the cache hierarchy
so as to improve data reuse. For GotoBLAS2 and BLIS, for
example, the GEMM C = A ·B, with C 2 Rm⇥n, A 2 Rm⇥k,
B 2 Rk⇥n, is performed via three nested loops around two
packing routines and a macro-kernel, as illustrated in Figure 3.

In practice, the parameters mc, nc, kc in the blocked high-
performance implementation of GEMM are adjusted for a target
processor architecture, so that Bc occupies a significant part
of the L3 cache while Ac resides on the L2 cache and Cc is
streamed from main memory [18]. In principle, it could seem
that the operational intensity of this realization is thus simply
given by

IFP/FC =
2mcnckc

(mcnc +mckc + kcnc)�
, (13)

which just replaces the m,n, k dimensions of the intensity of
the general case with the architecture parameters mc, nc, kc.
However, in the specific case of the GEMM operations appear-
ing in NN, it is important to take into account whether any

𝜇 x I
𝛾

Mem
or

y-
bo

un
d

Com
pu

te
-

bo
un

d

Estimated execution time =
flops / min(𝜇 x I, GFLOPS)

Example: GEMM

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance Model

Node performance:
• Roofline model: flops (2mnk) / memops (2mn+mk+nk) for FC and CONV

FC

CONV

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance Model

Node performance:
• We consider a blocked implementation of GEMM, as it is done in GotoBLAS2,

OpenBLAS, BLIS, or Intel MKL

• Partitioning according to a specific level of cache hierarchy (OpenBLAS and BLIS)

• m, n, k are reduced to mc, nc, kc so that Bc
fits in L3, Ac fits in L2, and C to RAM

• Intensity is then computed as:

Now, let us analyze the per-process memory requirements
of two representative NNs: VGG16 and ResNet-50 [15]. The
former one comprises 123 million weights, which require
471 MiB when using IEEE-754 single-precision floating-point
numbers (hereafter, FP32). Considering that the computations
for FP and BP-WU both need these weights, the model
requires twice this memory, i.e., 942 MiB per process. Fol-
lowing the same argument, the total amount of memory for
the ResNet-50 model is 16 MiB per process. These memory
requirements fit the RAM capacity of current SOTA cluster
nodes.

Note that the estimated per-process memory requirements
for data parallelism do not consider model compression tech-
niques, such as model pruning and/or quantization, which
may considerably reduce the memory needs (see, e.g., [4])
and extend the range of problems that can be tackled via
this parallelization scheme. Furthermore, the memory capacity
bottleneck can be partially tackled by storing the model in
secondary memory as, provided the re-use factor for the GEMM
(equal to the batch size) is large enough, the access to the
data in secondary memory can be overlapped with enough
computation.

IV. PERFORMANCE MODEL

A. Neural network

We consider training a NN composed of L layers, with nl

neurons at layer l = 1, 2, . . . , L, that processes a batch of
b inputs at a time. A layer can be fully-connected (FC) or
convolutional (CONV) [15]. We discard other types of layers,
as we expect they contribute a minor cost to the total execution
time for complex DNNs. For the same reasons, we also dismiss
the costs due to other operations such as the application of
the non-linear function, low-order terms, etc. Finally, all data
and arithmetic are performed with (floating-point) numbers
represented with � bytes per number.

B. Parallel cluster

We consider a cluster comprised of P nodes. The perfor-
mance of the node is characterized by a (theoretical) peak rate
of � FLOPS (flops/s) and a memory bandwidth of µ bytes/s.
We assume two interconnect topologies between the cluster
nodes:

• Star (all the nodes attached to a central switch that
provides full speed between any two nodes).

• 2D mesh.
The network transmission performance is characterized by
link latency and bandwidth parameters given by ↵ and �,
respectively.

We assume that all the nodes are connected and thus do not
consider the topology of the interconnect. In this scenario, the
cost of sending a message of s elements of size � between
any two nodes costs ↵+ s�

� (in sec.). As part of future work,
we plan to consider network conflicts in our model.

The parameters to model the NN and parallel cluster are
collected in Table II.

Parameter Meaning
L Number of layers in the NN.
nl�1, nl Number of inputs, outputs in layer l.
kwl , khl Kernel width, height of layer l (only CONV).
cl Number of kernels (channels) in layer l (only CONV).
b Batch size.
� Bytes per floating-point number.
P Number of nodes in the parallel cluster.
� Theoretical peak performance (in FLOPS).
µ Memory bandwidth (in bytes/s).
↵ Link latency (in s).
� Link bandwidth (in bytes/s).

TABLE II: Parameters for the performance model.

C. Node performance
The roofline model [19] provides a visual inspection tool

to analyze the performance of any algorithm including, in our
case, the GEMM operations to be performed locally at each
node during FP and BP. The performance attained by these
operations can be limited by either the memory access or the
floating-point units (FPUs) throughput. This is determined by
the memory bandwidth, the theoretical peak performance of
the FPUs, and the operation intensity of the algorithm, say I ,
which is given by the number of flops per byte accessed in
memory.

Using the (approximate) number of flops and memops
performed at layer l in Table III, we can easily obtain the
intensity for each layer of a generic NN. For example, the
intensity of the GEMM to be computed during FP, for a FC
layer, is

IFP/FC =
2nlnl�1b

(nlb+ nl�1b+ nlnl�1)�
flops/byte. (12)

These initial estimates of the operational intensity can be
refined by considering a blocked (or tiled) implementation of
GEMM, as those that are part of high-performance instances
of this operation in dense linear algebra libraries such as
GotoBLAS2, OpenBLAS, BLIS and Intel MKL [3], [10], [18].
In particular, in these instances of GEMM, the matrix operands
are partitioned to target a specific level of the cache hierarchy
so as to improve data reuse. For GotoBLAS2 and BLIS, for
example, the GEMM C = A ·B, with C 2 Rm⇥n, A 2 Rm⇥k,
B 2 Rk⇥n, is performed via three nested loops around two
packing routines and a macro-kernel, as illustrated in Figure 3.

In practice, the parameters mc, nc, kc in the blocked high-
performance implementation of GEMM are adjusted for a target
processor architecture, so that Bc occupies a significant part
of the L3 cache while Ac resides on the L2 cache and Cc is
streamed from main memory [18]. In principle, it could seem
that the operational intensity of this realization is thus simply
given by

IFP/FC =
2mcnckc

(mcnc +mckc + kcnc)�
, (13)

which just replaces the m,n, k dimensions of the intensity of
the general case with the architecture parameters mc, nc, kc.
However, in the specific case of the GEMM operations appear-
ing in NN, it is important to take into account whether any

FC CONV
flops memops flops memops

FP 2nlnl�1b nlb+ nl�1b+ nlnl�1 2nlkwl khl clcl�1b kwl khl clcl�1 + (nl�1cl�1 + nlcl)b
BP-GC 2nlnl�1b nlb+ nl�1b+ nlnl�1 2nlkwl khl clcl�1b kwl khl clcl�1 + (nl�1cl�1 + nlcl)b
BP-WU 2nlnl�1b nlb+ nl�1b+ 2nlnl�1 2nlkwl khl clcl�1b kwl khl clcl�1 + (nl�1cl�1 + nlcl)b

TABLE III: Floating-point operations and memory accesses in layer l. The dimensions of the matrix operands are given in
Table II.

Topology Star Mesh

Algorithm Latency Communication Latency Communication

MST 2dlog2 P e(↵1 + ↵3) 2dlog2 P e s�
� 2

Pd�1
k=0 dlog2 dke(↵1 + ↵3) 2

Pd�1
k=0 dlog2 dke

s�
�

BKT 2P↵1 2 (P�1)
P

s�
� 2

Pd�1
k=0 dk↵1 2 (P�1)

P
s�
�

TABLE IV: Cost of performing an Allreduce of a vector of dimension s.

for jc = 0, 1, . . . , n � 1 in steps of nc
for pc = 0, 1, . . . , k � 1 in steps of kc
B(pc : pc + kc � 1, jc : jc + nc � 1) ! Bc
for ic = 0, 1, . . . ,m � 1 in steps of mc
A(ic : ic + mc � 1, pc : pc + kc � 1) ! Ac
// Macro-kernel
Cc(ic : ic + mc � 1, jc : jc + nc � 1)
+= Ac(ic : ic + mc � 1, pc : pc + kc � 1)
· Bc(pc : pc + kc � 1, jc : jc + nc � 1)

endfor
endfor

endfor

Fig. 3: Blocked high performance implementation of GEMM.
In the code, Cc ⌘ C(ic : ic +mc � 1, jc : jc + nc � 1) is just
a notation artifact, introduced to ease the presentation of the
algorithm, while Ac, Bc correspond to actual buffers that are
involved in data copies.

of the operand dimensions (m,n, k) is smaller than the corre-
sponding architecture parameter (mc, nc, kc). That may trans-
form an apparently compute-bound operation into a memory-
bound one. For example, consider the BLIS implementation
of GEMM on an Intel Xeon Platinum 8180M (Skylake), where
the optimal values for the architecture parameters are given
by m

o
c = 480 and k

o
c = 384, while the performance is

quite independent of nc. In this particular architecture, in case
nl ⌧ m

o
c and/or nl�1 ⌧ k

o
c , the realization of the GEMM

kernel invoked from FP in a FC layer can become a memory-
bound kernel.

D. Allreduce
There are different communication schemes to implement

the Allreduce data exchange needed during the weight update
(see subsection III-B), which can be optimal depending on
the message dimension, network topology and the number of
processes [1]. Among these, we will consider the following
two schemes to perform the Allreduce of a vector of size s,
with s being an integer multiple of P :

• MST: The communication is realized by first reducing
all the data in a single node and then broadcasting the
result from there to all the cluster nodes. The reduction

and broadcast are performed using a minimum spanning
tree (MST) scheme [1].

• BKT: The bucket Allreduce algorithm first reduce-scatters
data on all nodes to next gather the global result using the
Allgather primitive. The bucket “large vector” algorithms
are based on the “divide, distribute and gather” paradigm
and leverage the (Reduce-)Scatter and (All)Gather prim-
itives to build other collective operations [1].

The cost model for an Allreduce implemented with these
schemes is given in Table IV. The cost of performing the
arithmetic operations in this operation is considered negligible
compared with the communication. Note that there are no
differences between the star and the 2-D mesh, as the cost
of communicating any two single nodes is assumed to be
↵+�s, independently of whether the nodes in the topology are
neighbours or not. This is coherent with the use of a SOTA
pipelined switching technique like wormhole or virtual cut-
through. The network topology though, will likely have an
impact on performance when potential congestion is consid-
ered. We leave this study as part of future work.

The parameters ↵1 and ↵3 in the table correspond, respec-
tively, to the latency associated with the so-called one-pass and
three-pass communication protocol. In the three-pass protocol,
a message is sent to alert the receiving node that a message of
a given size will be sent. After the buffer space for the message
has been allocated, the receiving node responds. Finally, the
message itself is sent. This requires three control messages to
be exchanged. On the contrary, the one-pass protocol sends a
message without the above-described handshake.

Although some DNN frameworks allow merging several
tensor reduction operations in order to decrease the number of
collective communications, in this work we assume that this
mechanism is not applied. Therefore, a reduction operation is
performed for each tensor.

E. Overlapping communication and computation

Let us denote the GEMM operations to be performed as part
of a single forward/backward pass, in (8), (9), and (10), by
their corresponding output matrix operand: Z

(l), G
(l), and

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance Model

Network transmission performance (MPI_Allreduce):
• Allreduce: Minimum spanning tree (MST) and Bucket (BKT)

FC CONV
flops memops flops memops

FP 2nlnl�1b nlb+ nl�1b+ nlnl�1 2nlkwl khl clcl�1b kwl khl clcl�1 + (nl�1cl�1 + nlcl)b
BP-GC 2nlnl�1b nlb+ nl�1b+ nlnl�1 2nlkwl khl clcl�1b kwl khl clcl�1 + (nl�1cl�1 + nlcl)b
BP-WU 2nlnl�1b nlb+ nl�1b+ 2nlnl�1 2nlkwl khl clcl�1b kwl khl clcl�1 + (nl�1cl�1 + nlcl)b

TABLE III: Floating-point operations and memory accesses in layer l. The dimensions of the matrix operands are given in
Table II.

Topology Star Mesh

Algorithm Latency Communication Latency Communication

MST 2dlog2 P e(↵1 + ↵3) 2dlog2 P e s�
� 2

Pd�1
k=0 dlog2 dke(↵1 + ↵3) 2

Pd�1
k=0 dlog2 dke

s�
�

BKT 2P↵1 2 (P�1)
P

s�
� 2

Pd�1
k=0 dk↵1 2 (P�1)

P
s�
�

TABLE IV: Cost of performing an Allreduce of a vector of dimension s.

for jc = 0, 1, . . . , n � 1 in steps of nc
for pc = 0, 1, . . . , k � 1 in steps of kc
B(pc : pc + kc � 1, jc : jc + nc � 1) ! Bc
for ic = 0, 1, . . . ,m � 1 in steps of mc
A(ic : ic + mc � 1, pc : pc + kc � 1) ! Ac
// Macro-kernel
Cc(ic : ic + mc � 1, jc : jc + nc � 1)
+= Ac(ic : ic + mc � 1, pc : pc + kc � 1)
· Bc(pc : pc + kc � 1, jc : jc + nc � 1)

endfor
endfor

endfor

Fig. 3: Blocked high performance implementation of GEMM.
In the code, Cc ⌘ C(ic : ic +mc � 1, jc : jc + nc � 1) is just
a notation artifact, introduced to ease the presentation of the
algorithm, while Ac, Bc correspond to actual buffers that are
involved in data copies.

of the operand dimensions (m,n, k) is smaller than the corre-
sponding architecture parameter (mc, nc, kc). That may trans-
form an apparently compute-bound operation into a memory-
bound one. For example, consider the BLIS implementation
of GEMM on an Intel Xeon Platinum 8180M (Skylake), where
the optimal values for the architecture parameters are given
by m

o
c = 480 and k

o
c = 384, while the performance is

quite independent of nc. In this particular architecture, in case
nl ⌧ m

o
c and/or nl�1 ⌧ k

o
c , the realization of the GEMM

kernel invoked from FP in a FC layer can become a memory-
bound kernel.

D. Allreduce
There are different communication schemes to implement

the Allreduce data exchange needed during the weight update
(see subsection III-B), which can be optimal depending on
the message dimension, network topology and the number of
processes [1]. Among these, we will consider the following
two schemes to perform the Allreduce of a vector of size s,
with s being an integer multiple of P :

• MST: The communication is realized by first reducing
all the data in a single node and then broadcasting the
result from there to all the cluster nodes. The reduction

and broadcast are performed using a minimum spanning
tree (MST) scheme [1].

• BKT: The bucket Allreduce algorithm first reduce-scatters
data on all nodes to next gather the global result using the
Allgather primitive. The bucket “large vector” algorithms
are based on the “divide, distribute and gather” paradigm
and leverage the (Reduce-)Scatter and (All)Gather prim-
itives to build other collective operations [1].

The cost model for an Allreduce implemented with these
schemes is given in Table IV. The cost of performing the
arithmetic operations in this operation is considered negligible
compared with the communication. Note that there are no
differences between the star and the 2-D mesh, as the cost
of communicating any two single nodes is assumed to be
↵+�s, independently of whether the nodes in the topology are
neighbours or not. This is coherent with the use of a SOTA
pipelined switching technique like wormhole or virtual cut-
through. The network topology though, will likely have an
impact on performance when potential congestion is consid-
ered. We leave this study as part of future work.

The parameters ↵1 and ↵3 in the table correspond, respec-
tively, to the latency associated with the so-called one-pass and
three-pass communication protocol. In the three-pass protocol,
a message is sent to alert the receiving node that a message of
a given size will be sent. After the buffer space for the message
has been allocated, the receiving node responds. Finally, the
message itself is sent. This requires three control messages to
be exchanged. On the contrary, the one-pass protocol sends a
message without the above-described handshake.

Although some DNN frameworks allow merging several
tensor reduction operations in order to decrease the number of
collective communications, in this work we assume that this
mechanism is not applied. Therefore, a reduction operation is
performed for each tensor.

E. Overlapping communication and computation

Let us denote the GEMM operations to be performed as part
of a single forward/backward pass, in (8), (9), and (10), by
their corresponding output matrix operand: Z

(l), G
(l), and

0 1 2 3

0 2

0

0 1 2 3

0 2

MPI
_R

ed
uc

e(
W

l)

MPI
_B

ca
st(

W
l)

0 1 2 3

0 1 2 3

MPI
_R

ed
uc

e_
sc

att
er

(W
l)

MPI
_A

llg
ath

er
(W

l)

0 1 2 3

0 1 2 3

0 1 2 3

…

MST (Reduce + Broadcast) BKT (Reduce-Scatter + Allgather)

Two-ring passes!

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance Model

Overlapping communication with computation in BP:
• Strict data dependencies: FP: A(2) → A(2)→… A(L); GC: G(L)→ G(L-1)→… G(2)
• But MPI_Allreduce(W(l)) can be performed in parallel with G(L-1),G(L-2),…, G(2)

• GC can overlap WU!!

G(4)G(3)G2)

W(5)W(4)W(3)W(2)

G(5)

B(2) B(3) B(4) B(5)

MPI
_A

llre
du

ce
(W

l)

W
U

MPI
_A

llre
du

ce
(W

l)
MPI

_A
llre

du
ce

(W
l)

MPI
_A

llre
du

ce
(W

l)

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Index

1. Training DNNs
2. Parallel training on clusters
3. Performance model
4. Results
5. Conclusions

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Results

CNN models:

SKYLAKE cluster parameters:

SKYLAKE node parameters:

BLIS GEMM on a SKYLAKE Intel processor: mco = 480, nco = 3072, and kco = 384

Model FC CONV POOL Total
AlexNet 3 5 3 11
Inception v3 1 94 14 109
ResNet-50 v2 1 53 1 55
VGG16 3 13 5 21

TABLE V: Decomposition of CNN models architecture.

Layer Type Neurons # of Kernels Kernel size
1 INPUT 224⇥ 224⇥ 3 – –
2 CONV 55⇥ 55⇥ 64 64 11⇥ 11⇥ 3
3 MAXPOOL – – –
4 CONV 27⇥ 27⇥ 192 192 5⇥ 5⇥ 64
5 MAXPOOL – – –
6 CONV 13⇥ 13⇥ 384 384 3⇥ 3⇥ 192
7 CONV 13⇥ 13⇥ 384 384 3⇥ 3⇥ 384
8 CONV 13⇥ 13⇥ 256 256 3⇥ 3⇥ 384
9 MAXPOOL – – –
10 FC 4,096 – –
11 FC 4,096 – –
12 FC # of Classes – –

TABLE VI: AlexNet architecture layers.

W
(l), respectively. Then, as discussed at the beginning of

section III, (in a synchronous version of training) there exist
strict data dependencies

Z
(2) ! Z

(3) ! · · · ! Z
(L) !

G
(L) ! G

(L�1) ! · · · ! G
(2)

,

which dictate a sequential order in the execution of these
operations. The weight updates, though, offer some flexibility
as W

(l) only depends on G
(l). This implies that the computa-

tion W
(l) can be performed in parallel with those of G

(l�1),
G

(l�2),. . . , G
(2). More interesting for our purposes is that,

in a message-passing realization of the training process, it is
possible to overlap the Allreduce communication necessary to
update W

(l) with the computations corresponding to G
(l�1),

G
(l�2),. . . , G(2).

V. RESULTS

A. Neural network models
In this section, we apply the theoretical analysis to four

well-known DNN models: AlexNet, Inception v3, ResNet-50
v2, and VGG16. These CNNs models are characterized by
multiple convolutional layers interlaced with pooling (e.g.,
average or max) and followed by one or more FC layers
responsible for compiling the final output. Table V specifies
the number of layers by type for these CNN models.3 Table VI
reports the complete per-layer architecture for the AlexNet,
which is composed of 5 convolutional, 3 pooling and 3 FC
final layers.

B. Node and cluster architecture
To model the performance of the CNNs we consider a

cluster comprised of 1,000 nodes, equipped with an Intel
Xeon Platinum 8180M processor and 256 GB of DDR4 RAM
memory (hereafter, SKYLAKE) per node; see Table VII.

3The specification of the models is obtained from the Tensorflow benchmark
suite [7].

Parameters SKYLAKE node
Processor model Intel Xeon Platinum 8180M
Max. FP32 throughput (flops/cycle) 64
Frequency (GHz) 2.5
of Cores 28 (56 2-way SMT)
Peak FP32 performance (GFLOPS) 8,960
Mem. bus width (Bytes) 8
Mem. clock rate (GHz) 2.666
Mem. channels 6
Peak mem. bandwidth (GBytes/s) 128
DDR4 RAM memory (GBytes) 256

TABLE VII: SKYLAKE node architectural parameters.

Parameters SKYLAKE cluster
of Nodes 1,000
Interconnect Dual-rail Mellanox EDR Infiniband
Link bandwidth (Gbps) 200
Max. link latency (µs) 0.5

TABLE VIII: SKYLAKE cluster parameters.

In the table, the peak floating-point performance per node
is computed as the FP32 (i.e., single precision) theoretical
throughput per core (when operating at the nominal frequency)
multiplied by the number of cores; the peak memory (RAM)
bandwidth is obtained by multiplying the memory bus width
by the DDR4 clock rate and the number of memory channels.
As mentioned in Section IV-C, we use the optimal cache
configuration parameters for the BLIS realization of GEMM
on a SKYLAKE Intel processor: mo

c = 480, no
c = 3072, and

k
o
c = 384. For the cluster interconnect, we select a dual-rail

Mellanox EDR Infiniband technology which delivers 200 Gbps
per link with a maximum latency of 0.5µs (see Table VIII).
With this interconnect, we model the afore-mentioned network
topologies: star and 2D mesh.

C. Characterization of CNNs via the roofline model
In this section, we use the roofline model for the SKYLAKE

processor to analyze whether the selected CNN models are
compute- or memory-bound with respect to the selected per-
process batch size. Figure 4 shows the roofline model for a
SKYLAKE node and places the CNN models according to their
average computational intensity and batch size. The average
intensity values consider all flops and bytes accessed among
the model layers in both FP and BP training stages. These
results show that all models, except Inception v3 with a batch
size equal to 10, are compute-bound; this reveals that, on
average, both the FC and CONV layers can proceed at the CPU
peak performance, regardless of the batch size. In contrast,
Inception v3 (with 94 CONV layers) requires a much larger
batch size to circumvent the memory bottleneck, mainly due
to the reduced input/output size (neurons) and the number of
kernels in the CONV layers toward the end of the CNN.

D. Modeling performance of distributed NN training
To complete the study, we leverage the roofline model

to compute the execution time of the training stage for the
CNNs when varying the algorithmic parameters (batch size,
communication scheme, overlapped communication), node

Model FC CONV POOL Total
AlexNet 3 5 3 11
Inception v3 1 94 14 109
ResNet-50 v2 1 53 1 55
VGG16 3 13 5 21

TABLE V: Decomposition of CNN models architecture.

Layer Type Neurons # of Kernels Kernel size
1 INPUT 224⇥ 224⇥ 3 – –
2 CONV 55⇥ 55⇥ 64 64 11⇥ 11⇥ 3
3 MAXPOOL – – –
4 CONV 27⇥ 27⇥ 192 192 5⇥ 5⇥ 64
5 MAXPOOL – – –
6 CONV 13⇥ 13⇥ 384 384 3⇥ 3⇥ 192
7 CONV 13⇥ 13⇥ 384 384 3⇥ 3⇥ 384
8 CONV 13⇥ 13⇥ 256 256 3⇥ 3⇥ 384
9 MAXPOOL – – –
10 FC 4,096 – –
11 FC 4,096 – –
12 FC # of Classes – –

TABLE VI: AlexNet architecture layers.

W
(l), respectively. Then, as discussed at the beginning of

section III, (in a synchronous version of training) there exist
strict data dependencies

Z
(2) ! Z

(3) ! · · · ! Z
(L) !

G
(L) ! G

(L�1) ! · · · ! G
(2)

,

which dictate a sequential order in the execution of these
operations. The weight updates, though, offer some flexibility
as W

(l) only depends on G
(l). This implies that the computa-

tion W
(l) can be performed in parallel with those of G

(l�1),
G

(l�2),. . . , G
(2). More interesting for our purposes is that,

in a message-passing realization of the training process, it is
possible to overlap the Allreduce communication necessary to
update W

(l) with the computations corresponding to G
(l�1),

G
(l�2),. . . , G(2).

V. RESULTS

A. Neural network models
In this section, we apply the theoretical analysis to four

well-known DNN models: AlexNet, Inception v3, ResNet-50
v2, and VGG16. These CNNs models are characterized by
multiple convolutional layers interlaced with pooling (e.g.,
average or max) and followed by one or more FC layers
responsible for compiling the final output. Table V specifies
the number of layers by type for these CNN models.3 Table VI
reports the complete per-layer architecture for the AlexNet,
which is composed of 5 convolutional, 3 pooling and 3 FC
final layers.

B. Node and cluster architecture
To model the performance of the CNNs we consider a

cluster comprised of 1,000 nodes, equipped with an Intel
Xeon Platinum 8180M processor and 256 GB of DDR4 RAM
memory (hereafter, SKYLAKE) per node; see Table VII.

3The specification of the models is obtained from the Tensorflow benchmark
suite [7].

Parameters SKYLAKE node
Processor model Intel Xeon Platinum 8180M
Max. FP32 throughput (flops/cycle) 64
Frequency (GHz) 2.5
of Cores 28 (56 2-way SMT)
Peak FP32 performance (GFLOPS) 8,960
Mem. bus width (Bytes) 8
Mem. clock rate (GHz) 2.666
Mem. channels 6
Peak mem. bandwidth (GBytes/s) 128
DDR4 RAM memory (GBytes) 256

TABLE VII: SKYLAKE node architectural parameters.

Parameters SKYLAKE cluster
of Nodes 1,000
Interconnect Dual-rail Mellanox EDR Infiniband
Link bandwidth (Gbps) 200
Max. link latency (µs) 0.5

TABLE VIII: SKYLAKE cluster parameters.

In the table, the peak floating-point performance per node
is computed as the FP32 (i.e., single precision) theoretical
throughput per core (when operating at the nominal frequency)
multiplied by the number of cores; the peak memory (RAM)
bandwidth is obtained by multiplying the memory bus width
by the DDR4 clock rate and the number of memory channels.
As mentioned in Section IV-C, we use the optimal cache
configuration parameters for the BLIS realization of GEMM
on a SKYLAKE Intel processor: mo

c = 480, no
c = 3072, and

k
o
c = 384. For the cluster interconnect, we select a dual-rail

Mellanox EDR Infiniband technology which delivers 200 Gbps
per link with a maximum latency of 0.5µs (see Table VIII).
With this interconnect, we model the afore-mentioned network
topologies: star and 2D mesh.

C. Characterization of CNNs via the roofline model
In this section, we use the roofline model for the SKYLAKE

processor to analyze whether the selected CNN models are
compute- or memory-bound with respect to the selected per-
process batch size. Figure 4 shows the roofline model for a
SKYLAKE node and places the CNN models according to their
average computational intensity and batch size. The average
intensity values consider all flops and bytes accessed among
the model layers in both FP and BP training stages. These
results show that all models, except Inception v3 with a batch
size equal to 10, are compute-bound; this reveals that, on
average, both the FC and CONV layers can proceed at the CPU
peak performance, regardless of the batch size. In contrast,
Inception v3 (with 94 CONV layers) requires a much larger
batch size to circumvent the memory bottleneck, mainly due
to the reduced input/output size (neurons) and the number of
kernels in the CONV layers toward the end of the CNN.

D. Modeling performance of distributed NN training
To complete the study, we leverage the roofline model

to compute the execution time of the training stage for the
CNNs when varying the algorithmic parameters (batch size,
communication scheme, overlapped communication), node

Model FC CONV POOL Total
AlexNet 3 5 3 11
Inception v3 1 94 14 109
ResNet-50 v2 1 53 1 55
VGG16 3 13 5 21

TABLE V: Decomposition of CNN models architecture.

Layer Type Neurons # of Kernels Kernel size
1 INPUT 224⇥ 224⇥ 3 – –
2 CONV 55⇥ 55⇥ 64 64 11⇥ 11⇥ 3
3 MAXPOOL – – –
4 CONV 27⇥ 27⇥ 192 192 5⇥ 5⇥ 64
5 MAXPOOL – – –
6 CONV 13⇥ 13⇥ 384 384 3⇥ 3⇥ 192
7 CONV 13⇥ 13⇥ 384 384 3⇥ 3⇥ 384
8 CONV 13⇥ 13⇥ 256 256 3⇥ 3⇥ 384
9 MAXPOOL – – –
10 FC 4,096 – –
11 FC 4,096 – –
12 FC # of Classes – –

TABLE VI: AlexNet architecture layers.

W
(l), respectively. Then, as discussed at the beginning of

section III, (in a synchronous version of training) there exist
strict data dependencies

Z
(2) ! Z

(3) ! · · · ! Z
(L) !

G
(L) ! G

(L�1) ! · · · ! G
(2)

,

which dictate a sequential order in the execution of these
operations. The weight updates, though, offer some flexibility
as W

(l) only depends on G
(l). This implies that the computa-

tion W
(l) can be performed in parallel with those of G

(l�1),
G

(l�2),. . . , G
(2). More interesting for our purposes is that,

in a message-passing realization of the training process, it is
possible to overlap the Allreduce communication necessary to
update W

(l) with the computations corresponding to G
(l�1),

G
(l�2),. . . , G(2).

V. RESULTS

A. Neural network models
In this section, we apply the theoretical analysis to four

well-known DNN models: AlexNet, Inception v3, ResNet-50
v2, and VGG16. These CNNs models are characterized by
multiple convolutional layers interlaced with pooling (e.g.,
average or max) and followed by one or more FC layers
responsible for compiling the final output. Table V specifies
the number of layers by type for these CNN models.3 Table VI
reports the complete per-layer architecture for the AlexNet,
which is composed of 5 convolutional, 3 pooling and 3 FC
final layers.

B. Node and cluster architecture
To model the performance of the CNNs we consider a

cluster comprised of 1,000 nodes, equipped with an Intel
Xeon Platinum 8180M processor and 256 GB of DDR4 RAM
memory (hereafter, SKYLAKE) per node; see Table VII.

3The specification of the models is obtained from the Tensorflow benchmark
suite [7].

Parameters SKYLAKE node
Processor model Intel Xeon Platinum 8180M
Max. FP32 throughput (flops/cycle) 64
Frequency (GHz) 2.5
of Cores 28 (56 2-way SMT)
Peak FP32 performance (GFLOPS) 8,960
Mem. bus width (Bytes) 8
Mem. clock rate (GHz) 2.666
Mem. channels 6
Peak mem. bandwidth (GBytes/s) 128
DDR4 RAM memory (GBytes) 256

TABLE VII: SKYLAKE node architectural parameters.

Parameters SKYLAKE cluster
of Nodes 1,000
Interconnect Dual-rail Mellanox EDR Infiniband
Link bandwidth (Gbps) 200
Max. link latency (µs) 0.5

TABLE VIII: SKYLAKE cluster parameters.

In the table, the peak floating-point performance per node
is computed as the FP32 (i.e., single precision) theoretical
throughput per core (when operating at the nominal frequency)
multiplied by the number of cores; the peak memory (RAM)
bandwidth is obtained by multiplying the memory bus width
by the DDR4 clock rate and the number of memory channels.
As mentioned in Section IV-C, we use the optimal cache
configuration parameters for the BLIS realization of GEMM
on a SKYLAKE Intel processor: mo

c = 480, no
c = 3072, and

k
o
c = 384. For the cluster interconnect, we select a dual-rail

Mellanox EDR Infiniband technology which delivers 200 Gbps
per link with a maximum latency of 0.5µs (see Table VIII).
With this interconnect, we model the afore-mentioned network
topologies: star and 2D mesh.

C. Characterization of CNNs via the roofline model
In this section, we use the roofline model for the SKYLAKE

processor to analyze whether the selected CNN models are
compute- or memory-bound with respect to the selected per-
process batch size. Figure 4 shows the roofline model for a
SKYLAKE node and places the CNN models according to their
average computational intensity and batch size. The average
intensity values consider all flops and bytes accessed among
the model layers in both FP and BP training stages. These
results show that all models, except Inception v3 with a batch
size equal to 10, are compute-bound; this reveals that, on
average, both the FC and CONV layers can proceed at the CPU
peak performance, regardless of the batch size. In contrast,
Inception v3 (with 94 CONV layers) requires a much larger
batch size to circumvent the memory bottleneck, mainly due
to the reduced input/output size (neurons) and the number of
kernels in the CONV layers toward the end of the CNN.

D. Modeling performance of distributed NN training
To complete the study, we leverage the roofline model

to compute the execution time of the training stage for the
CNNs when varying the algorithmic parameters (batch size,
communication scheme, overlapped communication), node

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Arithmetic intensity of CNNs

• Batch size 10 and 60 samples per process, i.e., 10k and 60k samples in total

Most CNNs are compute bound, except for Inception-v3 with batch size 10k

 1024

 2048

 4096

 8192

 16384

 32768

 8 16 32 64 128 256 512 1024

Peak FP perf.

Peak
 mem

ory bandwidthG
FL

O
PS

Operational intensity (�ops/byte)

 1024

 2048

 4096

 8192

 16384

 32768

 8 16 32 64 128 256 512 1024

Peak FP perf.

Peak
 mem

ory bandwidthG
FL

O
PS

Operational intensity (�ops/byte)

Batch size 10

Alex
Net

Incep
tion-v3

ResN
et-5

0-v2

VGG16

Batch size 60

Alex
Net

Incep
tion-v3

ResN
et-5

0-v2
VGG16

Fig. 4: Roofline model for SKYLAKE and average intensity
for the CNN models with different batch sizes.

performance (floating-point operations per second, or FLOPS,
and memory bandwidth) and cluster configuration (number
of nodes and link bandwidth). Figure 5 shows the (modeled)
execution times for the aforementioned combinations. For each
row of plots, we vary a single parameter while setting the
remaining ones to the “default” values in Table VII. The bold
vertical line in each plot indicates where the SKYLAKE is
placed according to the original parameters. For this experi-
ment, we set the batch size to 30k inputs, except when this is
the varying parameter (first row of plots).

As expected, the models that overlap computation with
communication outperform those without this enhancement.
The reason is clear, as these configurations concurrently update
the model while simultaneously reducing the weights. More-
over, we observe that BKT algorithms outperform their MST
variants in almost all scenarios. The exception is the Inception
v3 model (third column), basically due to the memory-bound
nature of this model.

The results where we vary node features (performance and
memory bandwidth) depict an almost plain behaviour beyond
the SKYLAKE configuration, showing that one should not
expect further performance benefits inside the node. Contrarily,
increasing the link bandwidth helps to reduce the training time.
This indicates that the performance of current DL frameworks
is heavily dependent on the network technology. Similarly,
increasing the number of nodes reduces the execution time
(up to a certain point), as each node has to process fewer
samples. However, adding nodes also increases the overhead
due to collective communications in a network-constrained
scenario. On the other hand, increasing the batch size leads to
longer execution times given that each node has to compute a
larger batch. This obviously yields an increase in the per-batch
processing time, which may be compensated by better use of
the hardware resources.

VI. CONCLUSIONS

In this paper, we have analyzed the scalability of the dis-
tributed training of four SOTA CNN models using the roofline

model: AlexNet, ResNet-50, Inception v3 and VGG16. For
this purpose, we have characterized the FC (GEMM) and
CONV layers in both FP and BP stages of the training,
considering the BLIS high-performance realization of GEMM
and a basic implementation for CONV. In addition, we have pa-
rameterized the inter-process communications in the BP phase
and estimated the execution time of both computation and
communication. Armed with this data, we have calculated the
total execution time on an Intel SKYLAKE node architecture
and a cluster with an Infiniband EDR interconnect, studying
the effect of overlapping communication with computation.

With this baseline, we have varied the basic parameters such
as batch size, peak performance, memory and network band-
width and cluster size. Our results show that: i) overlapping
communication with computation significantly increases the
performance; and, in general, ii) the current CNN models are
compute-bound and, therefore, improving the node capabilities
does not bring any noticeable improvements. However, acting
on the link bandwidth may reduce the execution time.

As a future work, we plan to extend the study to other archi-
tectures and compare these experiments with results from real
platforms. Moreover, we plan to include network congestion
in the analytical modelling to obtain more accurate results.

ACKNOWLEDGMENT

Researchers from Universitat Jaume I were supported by
the project TIN2017-82972-R from the MINECO, Spain.
Manuel F. Dolz was also supported by the Plan GenT project
CDEIGENT/2018/014 from the Generalitat Valenciana, Spain.

REFERENCES

[1] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn.
Collective communication: Theory, practice, and experience. Concurr.
Comput.: Pract. Exper., 19(13):1749–1783, September 2007.

[2] L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams, Y. Gong, and A. Acero. Recent advances in deep
learning for speech research at microsoft. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 8604–
8608, May 2013.

[3] Kazushige Goto and Robert van de Geijn. Anatomy of high-performance
matrix multiplication. ACM Transactions on Mathematical Software,
34(3):12:1–12:25, May 2008.

[4] Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and Huffman coding, 2015. arXiv:1510.00149.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[6] Catherine F. Higham and Desmond J. Higham. Deep learning: An
introduction for applied mathematicians, 2018. arXiv:1801.05894.

[7] Google Inc. Tensorflow benchmarks.
[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran
Associates Inc.

[9] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server.
In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 583–598, Berkeley, CA,
USA, 2014. USENIX Association.

[10] OpenBLAS. http://xianyi.github.com/OpenBLAS/, 2012.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance of distributed training

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 10 20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
tim

e (
s)

Performance (TFLOPS)

(e) AlexNet vs. performance
no over. MST
no over. BKT

MST
BKT

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100
Performance (TFLOPS)

(f) ResNet-50 v2 vs. performance
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 10 20 30 40 50 60 70 80 90 100
Performance (TFLOPS)

(g) Inception v3 vs. performance
no over. MST
no over. BKT

MST
BKT

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 10 20 30 40 50 60 70 80 90 100
Performance (TFLOPS)

(h) VGG16 vs. performance
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance of distributed training

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 50 100 150 200 250 300 350 400

Ex
ec

ut
io

n
tim

e (
s)

Memory bandwidth (GB/s)

(i) AlexNet vs. memory bandwidth
no over. MST
no over. BKT

MST
BKT

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400
Memory bandwidth (GB/s)

(j) ResNet-50 v2 vs. memory bandwidth
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 50 100 150 200 250 300 350 400
Memory bandwidth (GB/s)

(k) Inception v3 vs. memory bandwidth
no over. MST
no over. BKT

MST
BKT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 50 100 150 200 250 300 350 400
Memory bandwidth (GB/s)

(l) VGG16 vs. memory bandwidth
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance of distributed training

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

Ex
ec

ut
io

n
tim

e (
s)

Link bandwidth (Gbps)

(m) AlexNet vs. link bandwidth
no over. MST
no over. BKT

MST
BKT

 0.1

 1

 10

 100

 1000

 1 10 100 1000
Link bandwidth (Gbps)

(n) ResNet-50 v2 vs. link bandwidth
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

 0.01

 0.1

 1

 10

 100

 1 10 100 1000
Link bandwidth (Gbps)

(o) Inception v3 vs. link bandwidth
no over. MST
no over. BKT

MST
BKT

 0.1

 1

 10

 100

 1 10 100 1000
Link bandwidth (Gbps)

(p) VGG16 vs. link bandwidth
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance of distributed training

 0.01

 0.1

 1

 0 500 1000 1500 2000

Ex
ec

ut
io

n
tim

e (
s)

Cluster size (nodes)

(q) AlexNet vs. cluster size
no over. MST
no over. BKT

MST
BKT

 0.1

 1

 10

 0 500 1000 1500 2000
Cluster size (nodes)

(r) ResNet-50 v2 vs. cluster size
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

 0.01

 0.1

 1

 0 500 1000 1500 2000
Cluster size (nodes)

(s) Inception v3 vs. cluster size
no over. MST
no over. BKT

MST
BKT

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000
Cluster size (nodes)

(t) VGG16 vs. cluster size
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Performance of distributed training

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60

Ex
ec

ut
io

n
tim

e (
s)

Batch size (x1,000)

(a) AlexNet vs. batch size
no over. MST
no over. BKT

MST
BKT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60
Batch size (x1,000)

(b) ResNet-50 v2 vs. batch size
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 10 20 30 40 50 60
Batch size (x1,000)

(c) Inception v3 vs. batch size
no over. MST
no over. BKT

MST
BKT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60
Batch size (x1,000)

(d) VGG16 vs. batch size
no over. MST
no over. BKT

MST
BKT

Fig. 5: CNN models execution time (FP+BP) per batch on varying batch sizes, performance, memory bandwidth, link bandwidth
and cluster sizes (rows 1–5, respectively).

[11] Jack Poulson. http://code.google.com/p/elemental, 2010.
[12] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

[13] ScaLAPACK project home page. http://www.netlib.org/scalapack.
[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, Dec 2017.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[17] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra

Package. The MIT Press, 1997.
[18] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework

for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw.,
41(3):14:1–14:33, 2015.

[19] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[20] Yang You, James Demmel, Kurt Keutzer, Cho-Jui Hsieh, Chris Ying, and
Jonathan Hseu. Large-batch training for LSTM and beyond. Technical
Report UCB/EECS-2018-138, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2018.

[21] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training, 2017. arXiv:1708.03888.

[22] J. Zhang and C. Zong. Deep neural networks in machine translation:
An overview. IEEE Intelligent Systems, 30(5):16–25, Sep. 2015.

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Index

1. Training DNNs
2. Parallel training on clusters
3. Performance model
4. Results
5. Conclusions

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Conclusions

• Current CNN models are mainly compute-bound:
• Improving the processor capabilities does not bring noticeable

improvements

• Overlapping communication with computation increases the
performance!

• Network is important: increasing link bandwidth may reduce
the execution time of collective operations

• Larger mini-batches provide a more accurate estimate of the
gradients and accelerate the optimization process, however
each step requires longer computations
• However, increasing mini-batch size can hurt test accuracy!

Theoretical Scalability Analysis of Distributed Deep CNNsHPML-CCRID, Larnaca 2019

Thank you for your attention!

Questions?

