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Understanding the Deep Learning Resurgence

Courtesy: http://www.deeplearningbook.org/contents/intro.html

• Deep Learning is a sub-set of Machine 
Learning

– But, it is perhaps the most radical and 
revolutionary subset

– Automatic feature extraction vs. hand-crafted 
features

• Deep Learning
– A renewed interest and a lot of hype!

– Key success: Deep Neural Networks (DNNs)

– Everything was there since the late 80s except 
the “computability of DNNs”

http://www.deeplearningbook.org/contents/intro.html
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Deep Learning Use Cases and Growth Trends

Courtesy: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big 
Data, and Deep Learning!

Increasing Need to Run these 
applications on the Cloud!!
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(1) Prepare 
Datasets @Scale

(2) Deep 
Learning @Scale

(3) Non-deep 
learning 

analytics @Scale

(4) Apply ML 
model @Scale

• Deep Learning over Big Data (DLoBD) is one of the most efficient analyzing paradigms

• More and more deep learning tools or libraries (e.g., Caffe, TensorFlow) start running over big 
data stacks, such as Apache Hadoop and Spark

• Benefits of the DLoBD approach

– Easily build a powerful data analytics pipeline
• E.g., Flickr DL/ML Pipeline, “How Deep Learning Powers Flickr”, http://bit.ly/1KIDfof

– Better data locality

– Efficient resource sharing and cost effective

Newer Workflows - Deep Learning over Big Data (DLoBD)
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Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

• Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Accelerators / Coprocessors 
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 200Gbps Bandwidth>Multi-core Processors SSD, NVMe-SSD, NVRAM

K - ComputerSunway TaihuLightSummit Sierra
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• Deep Learning has two major tasks
1. Training of the Deep Neural Network

2. Inference (or deployment) that uses a trained DNN

• DNN Training
– Training is a compute/communication intensive process – can take days to 

weeks

– Faster training is necessary!

• Faster training can be achieved by
– Using Newer and Faster Hardware – But, there is a limit!

– Can we use more GPUs or nodes?
• The need for Parallel and Distributed Training 

Key Phases of Deep Learning
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• Scale-up: Intra-node Communication

– Many improvements like:
• NVIDIA cuDNN, cuBLAS, NCCL, etc.

• CUDA 9 Co-operative Groups

• Scale-out: Inter-node Communication

– DL Frameworks – most are optimized for 
single-node only

– Distributed (Parallel) Training is an emerging 
trend

• OSU-Caffe – MPI-based

• Microsoft CNTK – MPI/NCCL2

• Google TensorFlow – gRPC-based/MPI/NCCL2

• Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)

Scale-up and Scale-out

Sc
al

e-
up

 P
er

fo
rm
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ce

Scale-out Performance

cuDNN

gRPC

Hadoop

MPI
MKL-DNN

Desired

NCCL2
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Holistic Evaluation is Important!!

• My framework is faster than 
your framework!

• This needs to be understood 
in a holistic way.

• Performance depends on 
the entire execution 
environment (the full stack)

• Isolated view of 
performance is not helpful

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on 
Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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How to efficiently scale-out a 

Deep Learning (DL) framework and take 
advantage of heterogeneous 

High Performance Computing (HPC) 
resources?

Broad Challenge: Exploiting HPC for Deep Learning
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1. What are the fundamental 
issues in designing DL 
frameworks?

– Memory Requirements

– Computation
Requirements

– Communication Overhead

2. Why do we need to support 
distributed training?

– To overcome the limits of 
single-node training

– To better utilize hundreds 
of existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 
brought forward by DL frameworks for 
Communication runtimes?

– Large Message Collective
Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in 
achieving Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 
level and Exploit it at the DL 
Framework level

– What performance benefits can 
be observed? 

– What needs to be fixed at the 
communication runtime layer?

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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• MPI-driven Deep Learning
– CPU-based Deep Learning

– GPU-based Deep Learning

• Co-designing Deep Learning Stacks with High-Performance MPI

• Out-of-core DNN training

• Accelerating TensorFlow on HPC Systems

• Accelerating Big Data Stacks 

• Efficient Deep Learning over Big Data

Multiple Approaches taken up by OSU
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Data Parallel Deep Learning and MPI Collectives

MPI_Bcast (GPU 0)
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MPI_Reduce (GPU 0)

Loop {}
• Major MPI Collectives

involved in Designing 
distributed frameworks

• MPI_Bcast – required for 
DNN parameter exchange

• MPI_Reduce – needed for 
gradient accumulation 
from multiple solvers

• MPI_Allreduce – use just 
one Allreduce instead of 
Reduce and Broadcast

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,000 organizations in 88 countries

– More than 539,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point 

Primitives

Collectives 
Algorithms

Energy-

Awareness

Remote 
Memory 
Access

I/O and

File Systems

Fault

Tolerance
Virtualization Active 

Messages
Job Startup

Introspection 
& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP
SR-
IOV

Multi 
Rail

Transport Mechanisms
Shared 

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*
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MVAPICH2 Software Family (CPU-Based Deep Learning)
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning 
Applications

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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Performance of CNTK with MVAPICH2-X on CPU-based Deep Learning
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CNTK AlexNet Training 
(B.S=default, iteration=50, ppn=28)

20%

9%

• CPU-based training of AlexNet neural 
network using ImageNet ILSVRC2012 
dataset

• Advanced XPMEM-based designs show 
up to 20% benefits over Intel MPI (IMPI) 
for CNTK DNN training using All_Reduce

• The proposed designs show good 
scalability with increasing system size

Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, J. Hashmi, S. Chakraborty, M. Bayatpour, H. 
Subramoni, and DK Panda, 32nd IEEE International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018

Available since MVAPICH2-X 2.3rc1 release
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• CPU-based distributed TensorFlow 
Benchmarks (TF) benchmark 

– tf_cnn_benchmark tests

• AlexNet model training 
– ImageNet ILSVRC2012 dataset

• Advanced SALaR and XPMEM based 
designs in MVAPICH-X showed good 
scalability 

• Up to 15% and 35% improvements in 
number of images per second at 448 and 
896 processes, respectively.

Performance of TensorFlow with MVAPICH2-X on CPU

TensorFlow Images per Second 

(higher is better) 

35%

SALaR: Scalable and Adaptive Designs for Large Message Reduction Collectives, M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, 
P. Kousha, and DK Panda IEEE Cluster 2018, Sep 2018 [Best Paper in Architecture Track]

Will be available in future MVAPICH2-X releases
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MVAPICH2 Software Family (GPU-Based Deep Learning) 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning 
Applications

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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PCIe

GPU

CPU

NIC

Switch

At Sender: 
cudaMemcpy(s_hostbuf, s_devbuf, . . .);
MPI_Send(s_hostbuf, size, . . .);

At Receiver:
MPI_Recv(r_hostbuf, size, . . .);
cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces 

High Productivity and Low Performance

MPI + CUDA - Naive
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PCIe

GPU

CPU

NIC

Switch

At Sender:
for (j = 0; j < pipeline_len; j++) 

cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j * 
blksz, …);

for (j = 0; j < pipeline_len; j++) {
while (result != cudaSucess) {

result = cudaStreamQuery(…);
if(j > 0) MPI_Test(…);

} 
MPI_Isend(s_hostbuf + j * block_sz, blksz . . .);

}
MPI_Waitall();

<<Similar at receiver>>

• Pipelining at user level with non-blocking MPI and CUDA interfaces

Low Productivity and High Performance

MPI + CUDA - Advanced
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At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.1 Releases

• Support for MPI communication from NVIDIA GPU device memory
• High performance RDMA-based inter-node point-to-point communication 

(GPU-GPU, GPU-Host and Host-GPU)
• High performance intra-node point-to-point communication for multi-GPU 

adapters/node (GPU-GPU, GPU-Host and Host-GPU)
• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node 

communication for multiple GPU adapters/node
• Optimized and tuned collectives for GPU device buffers
• MPI datatype support for point-to-point and collective communication from 

GPU device buffers
• Unified memory
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• Released on 03/16/2018

• Major Features and Enhancements

– Based on MVAPICH2 2.3.1

– Enhanced intra-node and inter-node point-to-point performance for DGX-2 and IBM POWER8 and IBM POWER9 systems

– Enhanced Allreduce performance for DGX-2 and IBM POWER8/POWER9 systems

– Enhanced small message performance for CUDA-Aware MPI_Put and MPI_Get

– Support for PGI 18.10

– Flexible support for running TensorFlow (Horovod) jobs

– Add support for Volta (V100) GPU

– Support for OpenPOWER with NVLink

– Efficient Multiple CUDA stream-based IPC communication for multi-GPU systems with and without NVLink

– Leverage Linux Cross Memory Attach (CMA) feature for enhanced host-based communication

– InfiniBand Multicast (IB-MCAST) based designs for GPU-based broadcast and streaming applications

– Efficient broadcast designs for Deep Learning applications

MVAPICH2-GDR 2.3.1
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• TensorFlow is the most popular 
DL framework

• gRPC is the official distributed 
training runtime

– Many problems for HPC use-
cases

• Community efforts - Baidu and 
Uber’s Horovod have added MPI 
support to TF across nodes

• Need to understand several 
options currently available 

Distributed Training using TensorFlow (TF)

Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”,
CCGrid ‘19. https://arxiv.org/abs/1810.11112

To be Presented on May 17th

(Session 7 B)

https://arxiv.org/abs/1810.11112
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• Efficient Allreduce is crucial for 
Horovod’s overall training performance

– Both MPI and NCCL designs are available

• We have evaluated Horovod extensively 
and compared across a wide range of 
designs using gRPC and gRPC extensions

• MVAPICH2-GDR achieved up to 90%
scaling efficiency for ResNet-50 Training 
on 64 Pascal GPUs

Scalable TensorFlow using Horovod, MPI, and NCCL

Awan et al., “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: 
Characterization, Designs, and Performance Evaluation”, (To be presented) CCGrid ‘19. 
https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

*Available since MVAPICH2-GDR 2.3a

~30X better
MV2 is ~2X better 

than Baidu

~10X better OpenMPI is ~5X slower 
than Baidu

~4X better
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation
• Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
• Optimized designs in upcoming MVAPICH2-GDR offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
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MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale
• Optimized designs in upcoming MVAPICH2-GDR offer better performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs
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Distributed Training with TensorFlow and MVAPICH2-GDR
• ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (8 Volta GPUs)
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• MVAPICH2-GDR 2.3.1 requires the following software to be installed on your system:
1. Mellanox OFED 3.2 and later

2. NVIDIA Driver 367.48 or later

3. NVIDIA CUDA Toolkit 7.5 and later

4. NVIDIA Peer Memory (nv_peer_mem) module to enable GPUDirect RDMA (GDR) support

• Strongly Recommended for Best Performance
5.   GDRCOPY Library by NVIDIA: https://github.com/NVIDIA/gdrcopy

• Comprehensive Instructions can be seen from the MVAPICH2-GDR User Guide:
– http://mvapich.cse.ohio-state.edu/userguide/gdr/

MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems

http://www.mellanox.com/page/products_dyn?product_family=26
http://www.nvidia.com/Download/driverResults.aspx/69372/
https://developer.nvidia.com/cuda-toolkit
http://www.mellanox.com/page/products_dyn?product_family=116
https://github.com/NVIDIA/gdrcopy
http://mvapich.cse.ohio-state.edu/userguide/gdr/
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• Simple Installation steps for both systems

• Pick the right MVAPICH2-GDR RPM from Downloads page:
– http://mvapich.cse.ohio-state.edu/downloads/

– e.g. http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-
mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm (== <mv2-gdr-rpm-name>.rpm)

$ wget http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/<mv2-gdr-rpm-
name>.rpm 

Root Users:

$ rpm -Uvh --nodeps <mv2-gdr-rpm-name>.rpm

Non-Root Users:

$ rpm2cpio <mv2-gdr-rpm-name>.rpm | cpio – id

• Contact MVAPICH help list with any questions related to the package

mvapich-help@cse.ohio-state.edu

MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems

http://mvapich.cse.ohio-state.edu/downloads/
http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm
mailto:mvapich-help@cse.ohio-state.edu
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• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses
– Multi-GPU Training within a single node

– Performance degradation for GPUs across different 
sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 
– Enable Scale-up (within a node) and Scale-out (across 

multi-GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on 
CIFAR-10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on 
ImageNet dataset

OSU-Caffe: Scalable Deep Learning
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Invalid use case
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http://hidl.cse.ohio-state.edu/

http://hidl.cse.ohio-state.edu/
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Training Large (Out-of-core) Models
• Large DNNs cannot be trained on GPUs due to memory limitation!

– ResNet-50 for Image Recognition but current frameworks can 
only go up to a small batch size of 45

– Next generation models like Neural Machine Translation 
(NMT) are ridiculously large, consists of billions of parameters, 
and require even more memory

– Can we design Out-of-core DNN training support using new 
software features in CUDA 8/9 and hardware mechanisms in 
Pascal/Volta GPUs? 

• General intuition is that managed allocations “will be” slow!

– The proposed framework called OC-Caffe (Out-of-Core Caffe)
shows the potential of managed memory designs that can 
provide performance with negligible/no overhead.

• OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for 
ResNet-50 training on the Volta V100 GPU with CUDA9 and CUDNN7

A. Awan et al., OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training, HiPC ’18
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• MPI-driven Deep Learning

• Co-designing Deep Learning Stacks with High-Performance MPI

• Out-of-core DNN training

• Accelerating TensorFlow on HPC Systems

• Accelerating Big Data Stacks 

• Efficient Deep Learning over Big Data

Multiple Approaches taken up by OSU
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Architecture Overview of gRPC 
Key Features:
• Simple service definition
• Works across languages and platforms

• C++, Java, Python, Android Java etc
• Linux, Mac, Windows.

• Start quickly and scale
• Bi-directional streaming and integrated

authentication
• Used by Google (several of Google’s cloud

products and Google externally facing APIs,
TensorFlow), Netflix, Docker, Cisco, Juniper
Networks etc.

• Uses sockets for communication!

Source: http://www.grpc.io/

Large-scale distributed systems  composed of 
micro services
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Performance Benefits for RDMA-gRPC with Micro-Benchmark

RDMA-gRPC RPC Latency

• gRPC-RDMA Latency on SDSC-Comet-FDR
– Up to 2.7x performance speedup over IPoIB for Latency for small messages
– Up to 2.8x performance speedup over IPoIB for Latency for medium messages
– Up to 2.5x performance speedup over IPoIB for Latency for large messages
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R. Biswas, X. Lu, and D. K. Panda, Accelerating gRPC and TensorFlow with RDMA for High-Performance Deep Learning over InfiniBand, HiPC ‘18.



HPML (May ‘19) 41Network Based Computing Laboratory

0

50

100

150

200

16 32 64

Im
ag

es
 / 

Se
co

nd

Batch Size

gRPPC (IPoIB-100Gbps)
Verbs (RDMA-100Gbps)
MPI (RDMA-100Gbps)
AR-gRPC (RDMA-100Gbps)

Performance Benefit for RDMA-TensorFlow (Inception3)

• TensorFlow Inception3 performance evaluation on an IB EDR cluster
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• High-Performance Design of TensorFlow over RDMA-enabled Interconnects

– High performance RDMA-enhanced design with native InfiniBand support at the verbs-level for gRPC and TensorFlow

– RDMA-based data communication

– Adaptive communication protocols

– Dynamic message chunking and accumulation

– Support for RDMA device selection

– Easily configurable for different protocols (native InfiniBand and IPoIB)

• Current release: 0.9.1

– Based on Google TensorFlow 1.3.0

– Tested with
• Mellanox InfiniBand adapters (e.g., EDR)

• NVIDIA GPGPU K80

• Tested with CUDA 8.0 and CUDNN 5.0

– http://hidl.cse.ohio-state.edu

RDMA-TensorFlow Distribution

http://hidl.cse.ohio-state.edu/
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• MPI-driven Deep Learning

• Co-designing Deep Learning Stacks with High-Performance MPI

• Out-of-core DNN Training

• Accelerating TensorFlow on HPC Systems

• Accelerating Big Data Stacks 

• Efficient Deep Learning over Big Data

Multiple Approaches taken up by OSU
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 3.x (RDMA-Hadoop-3.x)

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)

– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache Kafka

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 310 organizations from 35 countries

• More than 29,950 downloads from the project site

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCE
Also run on Ethernet

Available for x86 and OpenPOWER

Support for Singularity and Docker

http://hibd.cse.ohio-state.edu/
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RandomWriter & TeraGen in OSU-RI2 (EDR)

Cluster with 8 Nodes with a total of 64 maps

• RandomWriter
– 3x improvement over IPoIB 

for 80-160 GB file size

• TeraGen
– 4x improvement over IPoIB for 

80-240 GB file size
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• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA-based design for Spark 1.5.1 

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. 
– 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps) 

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps) 

Performance Evaluation on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time
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X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA-capable Networks, HotI 2017.

High-Performance Deep Learning over Big Data (DLoBD) Stacks
• Challenges of Deep Learning over Big Data 

(DLoBD)
 Can RDMA-based designs in DLoBD stacks improve 

performance, scalability, and resource utilization 
on high-performance interconnects, GPUs, and 
multi-core CPUs? 

 What are the performance characteristics of 
representative DLoBD stacks on RDMA networks?

• Characterization on DLoBD Stacks
 CaffeOnSpark, TensorFlowOnSpark, and BigDL
 IPoIB vs. RDMA; In-band communication vs. Out-

of-band communication; CPU vs. GPU; etc.
 Performance, accuracy, scalability, and resource 

utilization 
 RDMA-based DLoBD stacks (e.g., BigDL over 

RDMA-Spark) can achieve 2.6x speedup compared 
to the IPoIB based scheme, while maintain similar 
accuracy
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• Scalable distributed training is getting important

• Requires high-performance middleware designs while exploiting modern 
interconnects

• Provided a set of different solutions to achieve scalable distributed 
training

– Optimized collectives for CPU-based training

– CUDA-aware MPI with optimized collectives for GPU-based training

– TensorFlow-gRPC with RDMA support

– Efficient DL support over Big Data

• Will continue to enable the DL community to achieve scalability and 
high-performance for their distributed training

Conclusions
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• High Performance Distributed Deep Learning: A Beginner's 
Guide
– May 15th (Session 1C)

• Accelerating Big Data Processing on Modern HPC Clusters
– May 16th (Session 4C)

More details in Two Tutorials at CCGrid ‘19
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/
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