TensorFlow on state-of-the-art HPC clusters:

a machine learning use case

Guillem Ramirez-Gargallo guillem.ramirez@bsc.es

Marta Garcia-Gasulla marta.garcia@bsc.es

Filippo Mantovani* filippo.mantovani@bsc.es

HPML workshop @ CCGRID19

Cyprus – 2019, May 14th

The context

The **Mont-Blanc** project

- ► European research project promoting / pushing Arm technology in HPC
- ► Initially focused on prototyping
- ► Interested in co-design with complex HPC applications

The **Student Cluster Competition**

- ► A team from BSC/UPC participates with Arm technology since 2015
- ► Teams have to operate a cluster within a power budget of 3 kW
- ► Since 2017 one of the challenges is focusing on AI (based on TensorFlow)

Contributions

- Study the performance of TensorFlow within the Arm hardware-software ecosystem
- Compare the performance of HPC clusters when running ML workloads

Approaches to "efficient" machine learning

Specialized hardware

- ► Tensor Processing Unit
- ► Graphics Processing Unit

Optimized linear algebra libraries

► Targeting different platforms/architectures e.g., MKL-DNN for x86

Research questions

Data centers are powered by different architectures (e.g., x86, Power9, Arm)

- ► How current HPC architectures behave under ML workloads?
- ▶ Which is the impact of optimized arithmetic libraries when running ML workloads?
- ► How to increase the efficiency of homogeneous clusters with ML workloads?

The hardware platforms – MareNostrum4, Intel x86

- ► #25 in the Top500 (Nov 2018)
- ▶ 11.15 PetaFlops peak performance
- ▶ 384.75 TB of main memory
- ► 3456 nodes:
 - 2× Intel Xeon Platinum 8160 (24 cores at 2.1 GHz)
 - 6 DDR4 memory channels at 2667 MHz per socket
 - 216 nodes with 384 GB/node
 - 3240 nodes with 96 GB/node
- ► Interconnection networks:
 - 100Gb Intel Omni-Path Full-Fat Tree
 - 10Gb Ethernet

The hardware platforms - Power9, IBM Power

Same architecture of Summit #1 of the Top500

- ► #411 in the Top500 (Nov 2018)
- ► 1.5 PetaFlops peak performance
- ▶ 52 compute nodes, each of them:
 - 2× IBM Power9 8335-GTH
 2.4 GHz (3.0 GHz on turbo, 20 cores and 4 threads/core)
 - 512 GB of main memory distributed on 32 GB \times 16 DIMMS @ 2666 MHz
 - 2× SSD 1.9 TB as local storage
 - 2 \times 3.2 TB NVME
 - 4× GPU NVIDIA V100 (Volta) with 16 GB HBM2.
- ► Interconnection network: Single Port Mellanox EDR

The hardware platforms - Dibona, Armv8

Same architecture of the Astra (Sandia) #204 of the Top500

- ► 49 TeraFlops theoretical peak performance
- ▶ 48 nodes, each node includes:
 - 2× Armv8 Marvell ThunderX2 CPUs
 2.0 GHz (2.5 GHz on turbo, 32 cores and 4 threads/core)
 - 8 memory channels per socket
 - 256 GB DDR4 memory
 - 128 GB SSD local storage
- ► Interconnection network: Single Port Mellanox EDR

Machine learning environment

- ► Training phase of TensorFlow
- ► Image recognition based on ImageNet
 - Synthetic image set to avoid I/O overhead
 - Real image set for scalability tests
- ► Two models
 - AlexNet
 - ResNet-50

Figures of interest

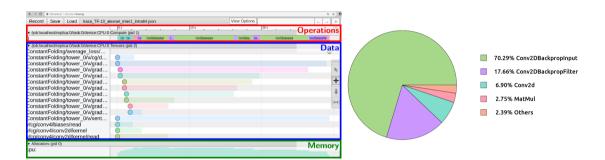
- ► Performance expressed as img/s
- ► Batch size and its effect on the training performance
- ► Training effectiveness checking the increasing trend of the accuracy

Methodology

We evaluate the vanilla version of TensorFlow and the one using vendor specific libraries

Cluster	TF version	Compiler	MPI	Back-End / Perf. Libs.	Front-End Flags
MareNostrum4	r1.11	.1 GCC 7.2.0 OpenMPI 3.1.1		Vanilla/Eigen	-mtune=skylake-avx512 -march=skylake-avx512 -O3
MareNostrum4	r1.11	GCC 7.2.0	OpenMPI 3.1.1	MKL DNN v0.16	-mtune=skylake-avx512 -march=skylake-avx512 -O3
Dibona	r1.11	GCC 8.2.0	OpenMPI 2.0.2.14	Vanilla/Eigen	-march=native -mtune=thunderx2t99 -O3
Dibona	r1.11*	GCC 8.2.0	OpenMPI 2.0.2.14	ArmPL 19.0	-march=native -mtune=thunderx2t99 -O3
Power9	r1.11	GCC 8.2.0	OpenMPI 3.1.1	Vanilla/Eigen	-mtune=power9 -mcpu=power9 -O3

Single-node evaluation

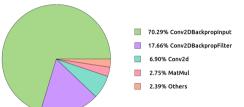

- ► Study of multi-threaded parallelism varying the batch size
 - Changing the number of threads used by each kernel
- ► Study of multi-process parallelism vs. multi-threaded paralellism
 - Leveraging Horovod

Multi-node evaluation

► Study of performance at scale

Profiling of operations – TensorFlow kernels

Parameters


► AlexNet model

- ▶ Batch size = 1024
- ► Syntetic image dataset based on ImageNet
- ► Intra-ops = 64
- ▶ Inter-ops = 1

Profiling of operations – Underlying libraries

Overhead	Shared object	Symbol	
76.58%	_pywrap_tensorflow_internal.so	Eigen::internal::gebp_kernel <float, float,="" long,<="" td=""><td></td></float,>	
4.44%	_pywrap_tensorflow_internal.so	Eigen::internal::gemm_pack_rhs <float, long,<="" td=""><td></td></float,>	
4.06%	_pywrap_tensorflow_internal.so	Eigen::internal::gemm_pack_rhs <float, long,<="" td=""><td></td></float,>	
2.02%	_pywrap_tensorflow_internal.so	std::_Function_handler <void (long,="" long),<="" td=""><td></td></void>	
1.50%	_pywrap_tensorflow_internal.so	Eigen::internal::gemm_pack_lhs <float, long,<="" td=""><td></td></float,>	
1.42%	_pywrap_tensorflow_internal.so	(anonymous namespace)::Col2im <float></float>	
1.32%	libc-2.17.so	memcpy	

Parameters

► AlexNet model

- ▶ Batch size = 1024
- ► Syntetic image dataset based on ImageNet
- ► Intra-ops = 64
- ► Inter-ops = 1

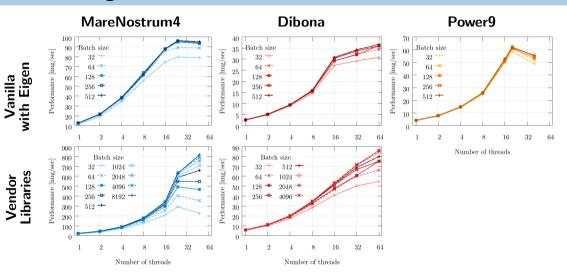
Improve performance plugging the Arm Performance Libraries

- ► Since 2016 Arm releases the *Arm Performance Libraries* a collection of libraries including BLAS, LAPACK, FFT and standard math routines.
- ▶ There was no version of TensorFlow leveraging the Arm Performance Libraries.
- ► We did it and share it with Arm. They are going to realease it here: https://gitlab.com/arm-hpc/packages/wikis/packages/tensorflow

Intranode evaluation

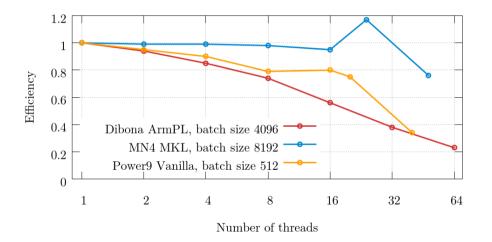
We evaluate the **performance of TensorFlow** within a single computational node

We divide the study into two parts:

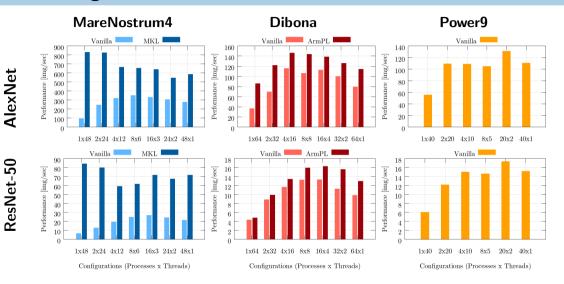

- 1. We study the effect on the performance [img/s] when
 - 1.1 changing the number of threads
 - 1.2 varying the batch size
- 2. We evaluate the **best configurations of MPI processes and threads** when using all the computational resources of one node

We perform both studies on MareNostrum4, Power9 and Dibona leveraging as backend

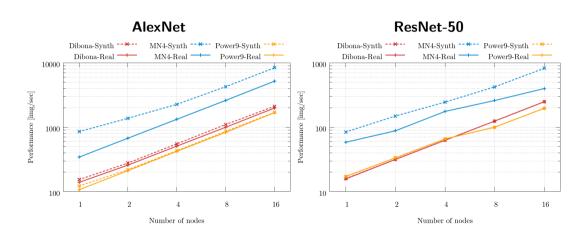
- ► Eigen
- ► Vendor-specific linear algebra libraries (when available)
 MKL for x86 and Arm Performance Libraries for Arm



Thread scaling – AlexNet



Thread scaling – AlexNet – efficiency



Hybrid Configurations Evaluation

Scalability

Conclusions

- ► Contribution to the Arm ecosystem developing a version of TensorFlow with Arm PL
- ► Classical HPC optimization techniques are beneficial also for ML
- ► Evaluation of TensorFlow with AlexNet and ResNet-50 on HPC clusters
 - ► using ArmPL on latest Marvell's Arm CPU (ThunderX2) 1.5× to 2.3× speedup compared to Vanilla
 - ▶ using MKL on latest Intel x86 CPU (Skylake) 1.7× to 6.9× speedup compared to Vanilla
 - ▶ using Eigen on latest IBM Power9 CPU

More details can be found in: https://upcommons.upc.edu/handle/2117/131762

Guillem Ramirez-Gargallo guillem.ramirez@bsc.es

Marta Garcia-Gasulla marta.garcia@bsc.es

Filippo Mantovani filippo.mantovani@bsc.es

