
Performance Optimization on Model
Synchronization in Parallel Stochastic Gradient

Descent Based SVM
Vibhatha Abeykoon, Geoffrey Fox, Minje Kim

Digital Science Center
USA

Related Work

• Pegasos SVM
• DC-SVM
• pPackSVM
• Parallel SGD
• Parallel SGD For High Level Architectures

https://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf
https://arxiv.org/abs/1810.09828
https://cs.stanford.edu/people/cgzhu/paper/icdm2009b.pdf
http://martin.zinkevich.org/publications/nips2010.pdf
https://arxiv.org/pdf/1802.08800.pdf

Objective

• Effect of mini-batch based model synchronization on SGD
based SVM algorithm convergence.

• Evaluate efficiency of the training model based on execution
time and testing accuracy upon batch size.

System Architecture

Anatomy of Datasets

DataSet Training Data (60% / 80%) Cross-Validation Data (60% / 80%) Testing Data (60%, 80%) Sparsity(%) Features

Ijcnn1 21,000 / 28,000 7,000 / 3,500 7,000 / 3,500 40.91 22

Webspam 210,000 / 280,000 70,000 / 35,000 70,000 / 35,000 99.9 254

Epsilon 240,000 / 320,000 80,000 / 40,000 80,000 / 40,000 44.9 2000

Objective Function and Equations

Key Factors

• Cross-Validation accuracy
• Cross-validation accuracy defines how far the model-in-training is

close towards the expected accuracy.
• Greedy approach would overfit the model to the training data by

deviating it from a higher testing accuracy.
• Cross-validation can be done as soon as the model is being

synchronized over the distributed models or per epoch.
• This is an expensive operation when the number of

cross-validation samples are higher and the dimensionality of a
datapoint is higher.

Key Factors

• Value of the Objective Function
• The value of the objective function tells how far is the algorithm

from convergence.
• When this value is a less fluctuating value, we can determine the

convergence of the algorithm.
• This step is also expensive depending on the number of samples

and features in a data point.
• This is also can be calculated once a model synchronization is

done over the distributed models or per epoch.

Algorithm Initialization

• Weight vectors are initialized with a Gaussian distribution.
• Inbuilt C++ libraries are used for this

(uniform_real_distribution<0,1>).
• Training data are shuffled with a random algorithm before

starting the training.

Algorithm Implementation

• We used OpenMPI 3.0.0 (C++)
• AllReduce collective was used to do model synchronization

and later averaging was done over each process.
• Learning rate is an adaptive diminishing function.

• Function of number of epochs

Distributed Algorithm
• Data is shuffled at distributed data loading
• Each machine receives an equal amount of data points for

processing [guarantee the load balancing]
• Each distributed model is initialized with the same weight vector
• Distributed models are synchronized on the initial block size
• After each synchronization barrier, an allreduce is called to sum

up the distributed models and the global model is gained by
averaging through the number of machines used.

• Per synchronization, calls cross-validate() and
calc-objective-value()

Distributed Algorithm

• Cross-validation calculation time is directly proportional to the
number of cross-validation samples and number of features per
data point.

• Objective function calculation time is also directly proportional to
the number of cross-validation samples and number of features
per data point.

• Each synchronization barrier is costly if this is done after
processing data per the predefined block size (mini-batch size).

Model Update vs Cross-Validation
• Model update involves d_t (=d_all / (K)) amount of data points
• Cross-Validation involved d_c amount of data points
• d_all = all data points , K = number of machines , b = block size
• d_t data points per machine
• d_c data points per cross-validation

• This can also be done in parallel and final accuracies can be averaged over
distributed models (improves performance).

• Per epoch there is one cross-validation called and d_t / b number of
calls of model synchronization

• A single cross validation step and model update step per data point
roughly take same time per data point and block based calls
priovides a gain.

Model Synchronization

Cross Validation Accuracy Variation
[Sequential Mode] - Ijcnn1 Dataset

Cross Validation Accuracy Variation
[Sequential Mode] - Webspam Dataset

: Webspam Dataset

Training Time Variation
[Sequential Mode] - Ijcnn1 Dataset

Block Size

Training Time Variation
[Sequential Mode] - Webspam Dataset

Block Size

Cross-Validation Accuracy Variation
Against Parallelism - Ijcnn1 Dataset

Cross-Validation Accuracy Variation
Against Parallelism - Webspam Dataset

Convergence with Parallelism

Convergence With Parallelism Cont...

Understanding Performance

• Understanding the performance of the algorithm in terms of
parallelism level and block size, in terms of times.

• Time to update one point (0.5625 us/epoch - epsilon x32 b=1)
• Time to check for convergence (0.375 us/epoch - epsilon x32 b=1)

(objective function evaluation)
• Time for MPI collective (3.5625 us/epoch - epsilon x32 b=1) (model

synchronization, i.e allreduce)

Training Time Breakdown

Training Time Breakdown

Training Time Breakdown

Training Time vs Parallelism

Training Time Vs Parallelism Cont...

Training Time Vs Parallelism Cont...

Testing Accuracy Variation

Summary of Experimental Results

DataSet Sequential Timing (seconds) Parallel Timing (seconds) Sequential Accuracy Parallel Accuracy Speed Up (x1 vs x32)

Ijcnn1 22.19 1.37 90.63 91.51 16.2

Webspam 2946.49 120.02 87.69 89.12 24.55

Epsilon 20037.5 968.782 80.06 84.36 21.12

Experiment Environment

• For this we used Juliet Cluster which is a part of the Future
Systems cloud environment of Digital Science Center in
Indiana University Bloomington

• Configuration of a Node in the Cluster
• Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
• Cores Per Socket = 18
• Sockets = 2
• Threads Per Core = 2

https://portal.futuresystems.org/
https://portal.futuresystems.org/

Extension of Research
• Providing support in both HPC and Dataflow-like computation

models.
• Twister2 SVM (Batch and Streaming [experimental])

https://twister2.gitbook.io/twister2/examples/ml/svm
• Available With Twister2 0.2.0 release. [Twister2 is a framework

developed by Indiana University Bloomington as a Big Data Hosting
Environment: A composable framework for high-performance data
analytics]

• Twister2 TSet: High Performance Iterative Dataflow a paper
published (May 10th, 2019) uses this SVM model as an application.

https://twister2.gitbook.io/twister2/examples/ml/svm
https://twister2.gitbook.io/twister2/release/twister2_release_0_2_0
https://www.researchgate.net/profile/Geoffrey_Fox/publication/332246120_Twister2TSet_High-Performance_Iterative_Dataflow/links/5ca8bc6f4585157bd3263666/Twister2TSet-High-Performance-Iterative-Dataflow.pdf

Future Work

• Online training with SGD-based SVM with Twister2
• Supporting multiple kernels and multi-model training

infrastructure with Twister2

Thank You
● Code

○ OpenMPI C++: https://github.com/vibhatha/PSGDSVMC [Used in Paper]
○ OpenMPI Java: https://github.com/vibhatha/PSGDSVM
○ OpenMPI Python: https://github.com/vibhatha/PSGDSVMPY
○ Twister2: https://twister2.gitbook.io/twister2/examples/ml/svm

● Paper
○ Pre-print: https://arxiv.org/abs/1905.01219

● Contact
○ https://www.vibhatha.org
○ vibhatha@gmail.com, vlabeyko@iu.edu
○ Digital Science Center [Indiana University Bloomington]

■ Geoffrey Fox’s Lab
https://www.researchgate.net/lab/Geoffrey-Charles-Fox-Lab-2

■ My Profile https://www.researchgate.net/profile/Vibhatha_Abeykoon2

https://github.com/vibhatha/PSGDSVMC
https://github.com/vibhatha/PSGDSVM
https://github.com/vibhatha/PSGDSVMPY
https://twister2.gitbook.io/twister2/examples/ml/svm
https://arxiv.org/abs/1905.01219
https://www.vibhatha.org
mailto:vibhatha@gmail.com
mailto:vlabeyko@iu.edu
https://www.researchgate.net/lab/Geoffrey-Charles-Fox-Lab-2
https://www.researchgate.net/profile/Vibhatha_Abeykoon2

