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Related Work

• Pegasos SVM
• DC-SVM
• pPackSVM
• Parallel SGD
• Parallel SGD For High Level Architectures 

https://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf
https://arxiv.org/abs/1810.09828
https://cs.stanford.edu/people/cgzhu/paper/icdm2009b.pdf
http://martin.zinkevich.org/publications/nips2010.pdf
https://arxiv.org/pdf/1802.08800.pdf


Objective

• Effect of mini-batch based model synchronization on SGD 
based SVM algorithm convergence.

• Evaluate efficiency of the training model based on execution 
time and testing accuracy upon batch size. 

 



System Architecture



Anatomy of Datasets

DataSet Training Data (60% / 80%) Cross-Validation Data (60% / 80%) Testing Data (60%, 80%) Sparsity(%) Features

Ijcnn1 21,000 / 28,000 7,000 / 3,500 7,000 / 3,500 40.91 22

Webspam 210,000 / 280,000 70,000 / 35,000 70,000 / 35,000 99.9 254

Epsilon 240,000 / 320,000 80,000 / 40,000 80,000 / 40,000 44.9 2000



Objective Function and Equations



Key Factors

• Cross-Validation accuracy
• Cross-validation accuracy defines how far the model-in-training is 

close towards the expected accuracy. 
• Greedy approach would overfit the model to the training data by 

deviating it from a higher testing accuracy. 
• Cross-validation can be done as soon as the model is being 

synchronized over the distributed models or per epoch.
• This is an expensive operation when the number of 

cross-validation samples are higher and the dimensionality of a 
datapoint is higher. 



Key Factors

• Value of the Objective Function
• The value of the objective function tells how far is the algorithm 

from convergence. 
• When this value is a less fluctuating value, we can determine the 

convergence of the algorithm. 
• This step is also expensive depending on the number of samples 

and features in a data point. 
• This is also can be calculated once a model synchronization is 

done over the distributed models or per epoch. 



Algorithm Initialization

• Weight vectors are initialized with a Gaussian distribution. 
• Inbuilt C++ libraries are used for this 

(uniform_real_distribution<0,1>). 
• Training data are shuffled with a random algorithm before 

starting the training. 



Algorithm Implementation

• We used OpenMPI 3.0.0 (C++)
• AllReduce collective was used to do model synchronization 

and later averaging was done over each process.
• Learning rate is an adaptive diminishing function.

• Function of number of epochs 



Distributed Algorithm
• Data is shuffled at distributed data loading
• Each machine receives an equal amount of data points for 

processing [guarantee the load balancing]
• Each distributed model is initialized with the same weight vector
• Distributed models are synchronized on the initial block size
• After each synchronization barrier, an allreduce is called to sum 

up the distributed models and the global model is gained by 
averaging through the number of machines used.

• Per synchronization, calls cross-validate() and 
calc-objective-value() 



Distributed Algorithm

• Cross-validation calculation time is directly proportional to the 
number of cross-validation samples and number of features per 
data point. 

• Objective function calculation time is also directly proportional to 
the number of cross-validation samples and number of features 
per data point. 

• Each synchronization barrier is costly if this is done after 
processing data per the predefined block size (mini-batch size).



Model Update vs Cross-Validation
• Model update involves d_t (=d_all / (K)) amount of data points 
• Cross-Validation involved d_c amount of data points
• d_all = all data points , K = number of machines , b = block size
• d_t data points per machine
• d_c data points per cross-validation

• This can also be done in parallel and final accuracies can be averaged over 
distributed models (improves performance). 

• Per epoch there is one cross-validation called and d_t / b number of 
calls of model synchronization 

• A single cross validation step and model update step per data point 
roughly take same time per data point and block based calls 
priovides a gain. 



Model Synchronization



Cross Validation Accuracy Variation 
[Sequential Mode] - Ijcnn1 Dataset



Cross Validation Accuracy Variation 
[Sequential Mode] - Webspam Dataset

: Webspam Dataset



Training Time Variation 
[Sequential Mode] - Ijcnn1 Dataset

Block Size



Training Time Variation 
[Sequential Mode] - Webspam Dataset

Block Size



Cross-Validation Accuracy Variation 
Against Parallelism - Ijcnn1 Dataset



Cross-Validation Accuracy Variation 
Against Parallelism - Webspam Dataset



Convergence with Parallelism



Convergence With Parallelism Cont...



Understanding Performance

• Understanding the performance of the algorithm in terms of 
parallelism level and block size, in terms of times.

• Time to update one point (0.5625 us/epoch - epsilon x32 b=1)
• Time to check for convergence (0.375 us/epoch - epsilon x32 b=1) 

(objective function evaluation)
• Time for MPI collective (3.5625 us/epoch - epsilon x32 b=1) (model 

synchronization, i.e allreduce)



Training Time Breakdown 



Training Time Breakdown 



Training Time Breakdown 



Training Time vs Parallelism



Training Time Vs Parallelism Cont...



Training Time Vs Parallelism Cont...



Testing Accuracy Variation



Summary of Experimental Results

DataSet Sequential Timing (seconds) Parallel Timing (seconds) Sequential Accuracy Parallel Accuracy Speed Up (x1 vs x32)

Ijcnn1 22.19 1.37 90.63 91.51 16.2

Webspam 2946.49 120.02 87.69 89.12 24.55

Epsilon 20037.5 968.782 80.06 84.36 21.12



Experiment Environment

• For this we used Juliet Cluster which is a part of the Future 
Systems cloud environment of Digital Science Center in 
Indiana University Bloomington

• Configuration of a Node in the Cluster
• Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
• Cores Per Socket = 18 
• Sockets = 2
• Threads Per Core = 2 

https://portal.futuresystems.org/
https://portal.futuresystems.org/


Extension of Research
• Providing support in both HPC and Dataflow-like computation 

models. 
• Twister2 SVM (Batch and Streaming [experimental]) 

https://twister2.gitbook.io/twister2/examples/ml/svm
• Available With Twister2 0.2.0 release.  [Twister2 is a framework 

developed by Indiana University Bloomington as a  Big Data Hosting 
Environment: A composable framework for high-performance data 
analytics]

• Twister2 TSet: High Performance Iterative Dataflow a paper 
published (May 10th, 2019) uses this SVM model as an application.

https://twister2.gitbook.io/twister2/examples/ml/svm
https://twister2.gitbook.io/twister2/release/twister2_release_0_2_0
https://www.researchgate.net/profile/Geoffrey_Fox/publication/332246120_Twister2TSet_High-Performance_Iterative_Dataflow/links/5ca8bc6f4585157bd3263666/Twister2TSet-High-Performance-Iterative-Dataflow.pdf


Future Work

• Online training with SGD-based SVM with Twister2
• Supporting multiple kernels and multi-model training 

infrastructure with Twister2



Thank You
● Code

○ OpenMPI C++: https://github.com/vibhatha/PSGDSVMC [Used in Paper]
○ OpenMPI Java: https://github.com/vibhatha/PSGDSVM
○ OpenMPI Python: https://github.com/vibhatha/PSGDSVMPY
○ Twister2: https://twister2.gitbook.io/twister2/examples/ml/svm

● Paper
○ Pre-print: https://arxiv.org/abs/1905.01219

● Contact
○ https://www.vibhatha.org
○ vibhatha@gmail.com, vlabeyko@iu.edu
○ Digital Science Center [Indiana University Bloomington]

■ Geoffrey Fox’s Lab 
https://www.researchgate.net/lab/Geoffrey-Charles-Fox-Lab-2

■ My Profile https://www.researchgate.net/profile/Vibhatha_Abeykoon2
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